
The MICKEY stream ciphers

Steve Babbage1 and Matthew Dodd2

1 Vodafone Group R&D, Newbury, UK steve.babbage@vodafone.com
2 Independent consultant matthew@mdodd.net

Abstract. The family of stream ciphers MICKEY (which stands for Mutual Irregular Clocking
KEYstream generator) is aimed at resource-constrained hardware platforms. It is intended to have
low complexity in hardware, while providing a high level of security. It uses irregular clocking
of shift registers, with some novel techniques to balance the need for guarantees on period and
pseudorandomness against the need to avoid certain cryptanalytic attacks.

1 Introduction and overview

The MICKEY family of algorithms was designed in response to the ECRYPT ‘Call for Stream
Cipher Primitives’ in 2005, and directed at ‘Profile 2’ — stream ciphers intended for use on
resource-constrained hardware platforms. Specifically, it is intended to have low complexity in
hardware, while providing a high level of security. In fact, two variants of the algorithm have
been defined: MICKEY, with an 80-bit key, and MICKEY-128, with a 128-bit key.

‘MICKEY’ is an abbreviation of ‘Mutual Irregular Clocking KEYstream generator’, and this
encapsulates the original design concept, illustrated in Figure 1. The algorithm is based around
two registers R and S, each of which has two modes of clocking selected by a control bit. With
this as a starting point, we were lead to design a clocking rule for the ensemble (R,S), in which
the control bit for each register is formed from combination of bits dependent on both registers.

It was also intended from the outset that R should clock as a Galois-stepping feedback shift
register either 1 or J times, given that J steps can be implemented efficiently in a single clock
cycle by taking advantage of an idea introduced by Jansen [14]. This is discussed in detail in
section 2.1 below.

The register S, on the other hand, was intended to clock non-linearly, in two different ways.
Successive bits of keystream are formed by combining bits from the registers R and S. Broadly
speaking, the idea was that the linearity of R would ensure good statistical properties and
guarantees about period, whilst the non-linearity of S would protect against attacks that might
be mounted against a linear system.

2 Design principles

In this section we describe the design, and the choices behind it, in further detail. Note that
complete formal specifications of MICKEY and MICKEY-128 are provided in appendices A and
B.

This section applies equally to both variants of the cipher, and we introduce the parameter n
so that we can discuss both at the same time; n = 100 for MICKEY and n = 160 for MICKEY-
128. Thus n is the length of register R, and, equally, the length of register S. As stipulated in
sections A.2 and B.2, keystream sequences are limited to 2|K|/2 bits, and at most 2|K|/2 sequences
may be produced from different IV values with a single key; here |K| denotes the key length.

When used in accordance with the rules set out in sections A.2 and B.2, both MICKEY
variants are intended to resist any attack faster than exhaustive key search. The designers have
not deliberately inserted any hidden weaknesses in the algorithms.

2 Steve Babbage and Matthew Dodd

Register R

Controls R
feedback

Controls S
feedback

Register S

Keystream bit

Register R

Controls R
feedback

Controls S
feedback

Register S

Keystream bit

Fig. 1. MICKEY algorithm structure

The designers of MICKEY family of algorithms do not claim any IPR over it, and make it
freely available for any purpose. To the best of our knowledge no one else has any relevant IPR
either.

2.1 The variable clocking of R: what it does

Register R has a set of feedback taps RTAPS , and clocks in one of two ways according to
the value of a control bit CONTROL BIT R. When the value of CONTROL BIT R = 0, the
clocking of R is a standard linear feedback shift register clocking operation (with Galois-style
feedback, according to the primitive characteristic polynomial CR(x) = xn+

∑
i∈RTAPS xi, with

INPUT BIT R XORed into the feedback). This is shown in Figure 2 for the case n = 100.

If we represent elements of the field GF (2n) as polynomials
∑n−1

i=0 rix
i, modulo CR(x), then

shifting the register corresponds to multiplication by x in the field.

r0 r1 r2 r3 r96 r97 r98 r99

INPUT_BIT_R

r0 r1 r2 r3 r96 r97 r98 r99

INPUT_BIT_R

Fig. 2. Clocking the R register with CONTROL BIT R = 0

The MICKEY stream ciphers 3

When CONTROL BIT = 1, as well as shifting each bit in the register to the right, we also
XOR it back into the current stage, as shown in Figure 3. This corresponds to multiplication by
x+ 1 in the same field.

r0 r1 r2 r3 r96 r97 r98 r99

INPUT_BIT_R

r0 r1 r2 r3 r96 r97 r98 r99

INPUT_BIT_R

Fig. 3. Clocking the R register with CONTROL BIT R = 1

The characteristic polynomial CR(x) has been chosen so that CR(x) | xJ + x + 1 where
J = 250 − 157 for MICKEY and J = 280 − 255 for MICKEY-128 . Thus, clocking the register
with CONTROL BIT R = 1 is equivalent to clocking the register J times.

This technique — a simple operation, related to the standard linear register clocking op-
eration but equivalent to making the register ‘jump’ by clocking it J times — is due to Cees
Jansen [14]. In [14], Jansen presents the technique applied to LFSRs with Fibonacci-style clock-
ing, but it is clear that the same approach is valid with Galois-style clocking.

This observation is elaborated in [6], where we describe a technique, reproduced below, for
finding suitable characteristic polynomials. Suppose first that C(x) is a polynomial of even degree
n over GF(2) that divides xJ + x + 1, where J = 2n/2 − δ for a small positive integer δ. Since
C(x) | xJ + x+ 1,

C(x) | x2n/2
+ xδ+1 + xδ

Hence, if we denote congruence mod C(x) by ≡,

x2
n
+ x =

(
x2

n/2
)2n/2

+ x

≡
(
xδ+1 + xδ

)2n/2

+ x

=
(
x2

n/2
)δ+1

+
(
x2

n/2
)δ

+ x

≡
(
xδ+1 + xδ

)δ+1
+

(
xδ+1 + xδ

)δ
+ x

If moreover C(x) is primitive, then x2
n
+ x ≡ 0, so the polynomial

Gδ(x) =
(
xδ+1 + xδ

)δ+1
+

(
xδ+1 + xδ

)δ
+ x

of degree (δ + 1)2 must have C(x) as a factor.
To find suitable characteristic polynomials for the MICKEY family of algorithms, we can

therefore apply the following algorithm, starting at δ = ⌈
√
n⌉ − 1:

– Construct Gδ(x), and see if it has any factor F (x) of degree n
– If it does, check whether F (x) is primitive

– If it is, then check whether F (x) really does divide x2
n/2−δ + x+ 1

4 Steve Babbage and Matthew Dodd

– If it does, set C(x) = F (x) and stop

– Otherwise, increment δ and start again

The following variant may be slightly more efficient:

– Compute gcd(Gδ(x), x
2n/2−δ + x+ 1) and factorise it

– If there is any factor F (x) of degree n, check whether F (x) is primitive

– If a primitive factor F (x) is found, set C(x) = F (x) and stop

– Otherwise, increment δ and start again

Notice, from the considerations above, that any factor of gcd(Gδ(x), x
2n/2−δ + x + 1) is also a

factor of x2
n
+ x.

2.2 Motivation for the variable clocking

Stream ciphers making use of variable clocking often lend themselves to statistical attacks, in
which the attacker guesses how many times the register has been clocked at a particular time.
There are a number of characteristics of a cipher design that may make such attacks possible.

To illustrate these possible characteristics, let us consider the stream cipher LILI-128 [9].
LILI-128 uses two LFSRs, of length 39 and 89; the 89-stage register is clocked 1, 2, 3 or 4 times
at each clock of the overall generator, based on two control bits from the 39-stage register.
Attacks based on guessing a likely number of clocks of the 89-stage register may be possible
because:

1. Clocking the 89-stage register r times and then s times gives the same result as clocking s
times and then r times. For instance, clocking twice and then three times gives the same
result as clocking three times and then twice. The different possible clocking operations
commute. So for instance the attacker may guess that, after ten clocks of the overall generator,
the 89-stage register has had two single-clocks, three double-clocks, three triple-clocks and
two quadruple-clocks; she doesn’t need to guess the order in which the different clockings
occurred.

2. Furthermore, clocking once and then four times gives the same end result as clocking twice
and then three times. There are lots of combinations that give, for example, 25 clocks of
the register after 10 clocks of the overall generator; the attacker can assign a single overall
probability to this event, without having to distinguish between the many different clocking
combinations that could have led to it. This further improves the efficiency of a statistical
attack.

3. Finally, 25 clocks of the 89-stage register may have occurred after ten generator clocks, or
after nine generator clocks, or after eleven generator clocks, Again, this can be used to
make attacks more efficient — see [10, 15] for an example.

The principles behind the design of the MICKEY algorithms are:

– to take all of the benefits of variable clocking, in protecting against many forms of attack;

– to guarantee period and local randomness;

– subject to those, to reduce the susceptibility to statistical attacks as far as possible.

Specifically, taking points 1 to 3 in turn:

1. does apply to register R (because clockJ ◦ clock1 = clock1 ◦ clockJ), but does not apply to
register S, whose different clocking operations do not commute.

The MICKEY stream ciphers 5

2. does not apply to either register. In the case of R, for any given values t ≤ 2|K|/2 and u,
there is at most one possible pair of values n1 and nJ such that 0 ≤ n1, nJ ≤ t; n1 + nJ = t;
and n1 + nJJ = u. (n1 and nJ represent the number of times that R is clocked once and J
times respectively.)

3. does not apply to either register. In the case of R, since J > 2|K|/2 (for either MICKEY
variant), it is true that for any given value u, there is as most one triple of values t, n1 and
nJ such that t ≤ 2|K|/2; 0 ≤ n1, nJ ≤ t; n1 + nJ = t; and n1 + nJJ = u.

In the MICKEY family of stream ciphers, the register R acts as the ‘engine’, ensuring that the
state of the generator does not repeat within the generation of a single keystream sequence, and
ensuring good local statistical properties. The influence of R on the clocking of S also prevents
S from becoming stuck in a short cycle. If the ‘jump index’ J < 2n−|K|/2, then the state of R

will not repeat during the generation of a maximum length
(
2|K|/2

)
-bit keystream sequence;

and if J > 2|K|/2, then property 3 above is satisfied. We chose the ‘jump index’ J to have the
largest possible value subject to J < 2n/2; then indeed both J < 2n−|K|/2 and J > 2|K|/2.

2.3 Selection of clock control bits

We deliberately chose the clock control bits for each register to be derived from both registers,
in such a way that knowledge of either register state is not sufficient to tell the attacker how
either register will subsequently be clocked. This helps to guard against ‘guess and determine’
or ‘divide and conquer’ attacks.

2.4 The S register feedback function

The clocking rule for register S is specified in sections A.3 and B.3. Figure 4 illustrates the
principle by showing the updating of the particular cell s56 in MICKEY. In general, the new
value of a cell si is formed from the exclusive-or of the following:

– si−1, if 1 ≤ i ≤ n− 1;
– the product of si ⊕COMP0 i and si+1 ⊕COMP1 i, if 1 ≤ i ≤ n− 2, for predefined bit values

COMP0 i and COMP1 i;
– sn−1 ⊕ INPUT BIT S , for certain predefined values of i which depend also on the value of

the clock control bit.

For any fixed value of CONTROL BIT S , the clocking function of S is invertible (so that
the space of possible register values is not reduced by clocking S).

Our design goal for the clocking function of S can be stated as follows. Assume that the initial
state of S is randomly selected, and that the sequence of values of CONTROL BIT S applied
to the clocking of S are also randomly selected. Then consider the sequence (s0(i))i=0,1,2,.... (By
s0(i) we mean the contents of s0 after the generator has been clocked i times.) We want to avoid
any strong affine relations in that sequence — that is, we do not want there to exist a set I such
that the value p =

∑
i∈I s0(i) is especially likely to be equal to 0 (or to 1) as the initial state

and CONTROL BIT S range over all possible values.
The reason for this design goal is to avoid attacks based on establishing a probabilistic linear

model (i.e. a set I as described above) that would allow a linear combination of keystream bits
to be strongly correlated to a combination of bits only from the (‘linear’, ‘weaker’) R register.
We are thinking here especially of distinguishing attacks.

It is not straightforward to meet this design goal in an optimum sense (even if we defined
it more precisely than we have done), but we do have some reason to believe that we have
met it pretty well. At least, earlier proposals we considered for S were weaker in this regard.

6 Steve Babbage and Matthew Dodd

s55 s56 s57

INPUT_BIT_S

s99

FB0i FB1i

CONTROL_BIT_S = 0 1

s55 s56 s57

INPUT_BIT_S

s99

FB0i FB1i

CONTROL_BIT_S = 0 1

Fig. 4. Clocking the S register

We modelled a number of constructions on a scaled down version of S, and looked for the
strongest linear relations holding over relatively short sequences (s0(i)), and we found that the
construction we have chosen performed well.

In particular, our construction preserves local randomness, in the sense that, if the initial
state is uniformly random, then a sequence of n successive bits s0(i) will also be uniformly
random. So no sum of fewer than n+ 1 successive bits s0(i) will be equal to 0 with probability
distinct from 1/2. From our empirical analysis, we believe that the strongest bias will come from
a combination selected from precisely n+ 1 successive bits s0(i).

We should be honest, though, and say that we would ideally have liked more time to analyse
possible constructions. There is probably some scope for further improvement.

2.5 Key loading

We use a non-linear loading mechanism to protect against resynchronisation attacks.

2.6 Algebraic attacks

Algebraic attacks usually become possible when the keystream is correlated to one or more
linearly clocking registers, whose clocking is either entirely predictable or can be guessed.

We have taken care that the attacker cannot eliminate the uncertainty about the clocking
of either register by guessing a small set of values. (By illustrative contrast, some attacks on
LILI-128 [9] were possible because the state of the 39-stage register could be guessed, and then
the clocking of the 89-stage register became known.)

Furthermore, each keystream bit produced by MICKEY is not correlated to the contents of
either one register (so in particular not to the ‘linear register’ R).

2.7 Output function

MICKEY uses a very simple output function (r0 ⊕ s0) to compute keystream bits from the
register states.

We considered more complex alternatives, e.g. of the form r0⊕g(r1 . . . r79)⊕s0⊕h (s1 . . . s79)
for some Boolean functions g and h. Although these might increase the security margin against
some types of attack, we preferred to keep the output function simple and elegant, and rely
instead on the mutual irregular clocking of the registers.

The MICKEY stream ciphers 7

3 Register sizes

In this section we consider the choice of the parameter n.

Initially, n was chosen to be the same as the key length, and this choice was retained in the
first, version 1, proposals for MICKEY and MICKEY-128 to ECRYPT [2, 3]. Subsequently this
decision was revised [4, 5] in the current (version 2.0) MICKEY algorithms, so that n became
1.25 times the key length.

This change was made in response to the work of Jin Hong and Woo-Hwan Kim [12]. They
considered three areas of (arguable) vulnerability, which are all addressed by this new choice for
the parameter n. We explain the details in the following sections.

3.1 Time-Memory-Data (TMD) tradeoff, with or without BSW sampling

Let N be the size of the keystream generator state space (so 2160 for MICKEY version 1). Let
X be the set of all possible keystream generator states. Let f : X → Y be the function that
maps a generator state to the first log2N bits of keystream produced. Suppose the attacker has
harvested a large number of log2N -bit keystream sequences yi ∈ Y , and wants to identify a
keystream generator state x ∈ X such that f(x) = yi for some i.

BS tradeoff The Biryukov-Shamir TMD [7] algorithm succeeds with high probability if the
following conditions are satisfied:

TM2D2 = N2 and 1 ≤ D2 ≤ T

where T is the online time complexity, M is the memory requirement, and D is the number of
keystream sequences available to the attacker. The offline time complexity is P = N/D.

BSW sampling When we say that we can perform BSW sampling [8] with a sampling factor
W , we mean that:

– there is a subset X ′ ⊆ X with cardinality N/W , and it is easy to generate elements of X ′;
and

– if Y ′ is the image of X ′ under f , then it is easy to recognise elements of Y ′.

Our attacker may consider only those keystream sequences that are elements of Y ′, and
apply the BS tradeoff to the problem of inverting the restricted function f ′ : X ′ → Y ′. If the
total number of keystream sequences available to the attacker is D, only roughly D/W of these
will fall in Y ′ and so be usable; on the other hand, the size of the set of preimages is now N/W
instead of N . The conditions for success become

TM2
(
D

W

)2

=

(
N

W

)2

and 1 ≤
(
D

W

)2

≤ T

i.e.

TM2D2 = N2 and W 2 ≤ D2 ≤ TW 2

and the offline time complexity remains P = (N/W)
(D/W) = N/D. Also, very importantly, the number

of table lookups in the online attack is reduced by a factor W , which greatly reduces the actual
time it takes.

8 Steve Babbage and Matthew Dodd

TMD tradeoff against MICKEY version 1 Hong and Kim [12] show that BSW sampling
can be performed on MICKEY version 1 with a sampling factor W = 227. This allows a TMD
tradeoff attack to be performed with the following complexity, for instance:

– unfiltered data complexity D = 260, e.g. 220 keystream sequences each of length roughly 240

bits; filtering these by BSW sampling means that the attack is performed against a reduced
set of D/W = 233 keystream sequences;

– search space of reduced size N/W = 2133;

– time complexity T = 266;

– memory complexity M = 267;

– offline time complexity P = 2100.

So we have an attack whose online time, data and memory complexities are all less than the
key size of 280. However, the one-off precomputation time complexity is greater than 280. Other
parameter values are possible, but the precomputation time is always greater than 280.

There is no consensus as to whether this constitutes a successful attack. Some authors seem
to ignore precomputation time completely, and consider only online complexity to matter; others
would say that an attack requiring overall complexity greater than exhaustive search is of no
practical significance. Although we incline more towards the second view, we recognise that some
will deem the cipher less than fully secure if such attacks exist.

MICKEY 2.0 In MICKEY 2.0, the state size N = 2200. Thus, for any BS tradeoff attack, with
or without BSW sampling, if TM2D2 = N2 then at least one of T , M or D must be at least
280. So no attack is possible with online complexity faster than exhaustive key search.

Earlier papers (e.g. [1]) have recommended that the state size of a keystream generator should
be at least twice the key size, to protect against what is now usually called the Babbage-Golić
TMD attack. By making the state size at least 2.5 times the key size, we also provide robust
protection against the Biryukov-Shamir TMD attack, with or without BSW sampling3. This
rather simple observation has not appeared in previous literature, as far as we have been able
to discover.

BSW sampling of MICKEY 2.0 It is still possible to perform BSW sampling on MICKEY
2.0. We have made no attempt to prevent this — we see no reason to do so that would justify
an additional complication to the cipher design.

3.2 State entropy loss and keystream covergence

It is fundamental to the design of the MICKEY algorithm family that the keystream generator
is subject to variable clocking under control of bits from within the generator. This results in
a reduction of the entropy of the overall generator state: some generator states after clocking
have two or more possible preimages, and some states have no possible preimages. The fact that
the control bit for each register is derived by XORing bits from both registers, and hence is
uncorrelated to the state of the register it controls, is crucial: it means that clocking the overall
generator does not reduce the entropy of either one register state.

However, for MICKEY version 1, Hong and Kim [12] show that the overall entropy loss can
result in the convergence of distinct keystream sequences within the parameters of legitimate use

3 We refer here only to TMD attacks to invert the function mapping keystream generator state to keystream.
We are not talking about the function mapping key and IV to keystream, as discussed by Hong and Sarkar
in [13]

The MICKEY stream ciphers 9

of the cipher. For example, if V keystream sequences of length 240 are generated from different
(K, IV) pairs, then for large enough V there will be state collisions — and of course, once
identical states are reached, subsequent keystream sequences are identical. An exact analysis
seems difficult, but it appears that V may not have to be much larger than 222 before collisions
will begin to occur.

This uncomfortable property holds because, after the generator has been run for long enough
to produce a 240-bit sequence, the state entropy will have reduced by nearly 40 bits, from the
initial 2160 to only just over 2120. Because 120 is less than twice the key size, we begin to see
collisions within an amount of data less than the key size.

In MICKEY 2.0, the state size is 200 bits, and the maximum permitted length of a single
keystream sequence is 240 bits. After the generator has been run for long enough to produce a
240-bit sequence, the entropy will still be just over 160 bits. This is twice the key size, and so
we no longer have a problem.

3.3 Weak keys

There is an obvious ‘lock-up’ state for the register R: if the key and IV loading and initialisation
leaves R in the all zeroes state, then it will remain permanently in that state. For MICKEY
version 1 we reasoned as follows:

It is clear that, if an attacker assumes that this is the case, she can readily confirm her
assumption and deduce the remainder of the generator state by analysing a short sequence
of keystream. But, because this can be assumed to occur with probability roughly 2−80

— the same probability for any guessed secret key to be correct — we do not think it
necessary to prevent it (and so in the interests of efficiency we do not do so).

Hong and Kim [12] point out that, for MICKEY version 1, there is also a lock-up state for
the register S. If the key and IV loading and initialisation leaves S in this particular state, then
it will remain permanently in that state, irrespective of the values of the clock control bits. The
probability of a ‘weak state’ in MICKEY version 1 is thus roughly 2−79. And 2−79 is greater
than 2−80

It is undoubtedly much easier to try two candidate secret keys, with a success probability
of 2−79, than to mount an attack based on these possible weak states. So we would still argue
that it is not necessary to guard against their occurrence. But anyway, with MICKEY 2.0 the
increased register lengths mean that the probability of a weak state goes down to roughly 2−99,
which is clearly too small to concern us.

4 Performance of the algorithm

The MICKEY cipher family is not designed for notably high speeds in software, although it
is straightforward to implement it reasonably efficiently. Our own reasonably efficient (but not
turbo-charged) implementations generated 108 bits of keystream in 3.81 seconds for MICKEY,
and in 4.81 seconds for MICKEY-128, using a PC with a 3.4GHz Pentium 4 processor. There may
be scope for more efficient software implementations that produce several bits of keystream at a
time, making use of look-up tables to implement the register clocking and keystream derivation.

Further information on the performance of MICKEY and MICKEY-128 in software — on
various platforms — and hardware can be found via [11].

5 Afterthoughts

So how is MICKEY looking now, compared to the other eSTREAM candidates?

10 Steve Babbage and Matthew Dodd

5.1 Security against classical cryptanalysis

In terms of security against classical cryptanalysis, we believe that MICKEY is standing up
very well. The observations of Hong and Kim [12] on the MICKEY version 1 ciphers are all fully
addressed in the current versions. No other threatening analysis has emerged, despite the efforts
of some very good cryptanalysts.

5.2 Security against side channel attacks

If security against side channel attacks is required, then MICKEY is perhaps not optimal. The
main area of susceptibility is the variable clocking of the linear registerR. When CONTROL BIT R =
1, the additional XORs will consume more power in a näıve implementation.

By contrast, the eSTREAM submission Pomaranch also uses the “jumping” idea, but in such
a way that half of the cells in a register have an XOR when the control bit takes one value, and
the other half do when the control bit takes the other value. So the overall power consumption
is likely to be the same. A similar approach could have been taken with MICKEY, and would
give readier protection against power analysis attacks.

Having said that, we think that side channel attacks are largely irrelevant in the great
majority of real world stream cipher applications. The legitimate user of an encrypting device
has no motivation to extract their own encryption key (whereas they may, for instance, be
motivated to clone their own SIM card or Pay-TV card). And if an outsider has close enough
access to the encrypting device to carry out attacks of this kind, then there are more obvious
bad things that she can do. It is possible to think up use cases in which side channel attacks on
a stream cipher might matter, but they are not typical.

5.3 Performance

MICKEY’s main performance goal is to run at very low power, or with very few logic gates, in
resource-constrained hardware. As such, it compares very well with other eSTREAM submis-
sions; it is indeed one of the very smallest.

Some other submissions have been designed to allow faster operation than MICKEY, by
allowing a much greater degree of pipelining. Trivium is the most extreme example. The variable
clocking approach taken in MICKEY does not lend itself well to pipelining.

So overall we think that MICKEY is a good choice where power or gate count are the prime
performance considerations; less so where the highest speeds are required.

5.4 Conclusion

The evidence so far from the eSTREAM process is that MICKEY is a high security cipher, well
suited to stream cipher applications where very low power or gate count are required.

A Specification of the cipher MICKEY

In this appendix, we provide a full specification of the stream cipher MICKEY (version 2.0).

A.1 Input and output parameters

MICKEY takes two input parameters:

– an 80-bit secret key K, whose bits are labelled k0 . . . k79;

The MICKEY stream ciphers 11

– an initialisation variable IV , anywhere between 0 and 80 bits in length, whose bits are
labelled iv0 . . . ivIVLENGTH−1.

The keystream bits output by MICKEY are labelled z0, z1, Ciphertext is produced from
plaintext by bitwise XOR with keystream bits, as in most stream ciphers.

A.2 Acceptable use

The maximum length of keystream sequence that may be generated with a single (K, IV) pair is
240 bits. It is acceptable to generate 240 such sequences, all from the same K but with different
values of IV . It is not acceptable to use two initialisation variables of different lengths with the
same K. And it is not, of course, acceptable to reuse the same value of IV with the same K.

A.3 Components of the keystream generator

The registers The generator is built from two registers R and S. Each register is 100 stages
long, each stage containing one bit. We label the bits in the registers r0 . . . r99 and s0 . . . s99
respectively.

Broadly speaking, we think of R as ‘the linear register’ and S as ‘the non-linear register’.

Clocking the register R Define a set of feedback tap positions for R:

RTAPS = {0, 1, 3, 4, 5, 6, 9, 12, 13, 16, 19, 20, 21, 22, 25, 28, 37, 38,
41, 42, 45, 46, 50, 52, 54, 56, 58, 60, 61, 63, 64, 65, 66, 67,
71, 72, 79, 80, 81, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97}

We define an operation CLOCK R (R, INPUT BIT R, CONTROL BIT R) as follows:

– Let r0 . . . r99 be the state of the register R before clocking, and let r′0 . . . r
′
99 be the state of

the register R after clocking.
– FEEDBACK BIT = r99 ⊕ INPUT BIT R
– For 1 ≤ i ≤ 99, r′i = ri−1; r

′
0 = 0

– For 0 ≤ i ≤ 99, if i ∈ RTAPS , r′i = r′i ⊕ FEEDBACK BIT
– If CONTROL BIT R = 1:

• For 0 ≤ i ≤ 99, r′i = r′i ⊕ ri

Clocking the register S Define four sequences (COMP0 i)
98
i=1, (COMP1 i)

98
i=1, (FB0 i)

99
i=0 and

(FB1 i)
99
i=0 according to Table 1.

We define an operation CLOCK S (S, INPUT BIT S , CONTROL BIT S) as follows:

– Let s0 . . . s99 be the state of the register S before clocking, and s′0 . . . s
′
99 be the state of the

register after clocking. We will also use ŝ0 . . . ŝ99 as intermediate variables to simplify the
specification.

– FEEDBACK BIT = s99 ⊕ INPUT BIT S
– For 1 ≤ i ≤ 98, ŝi = si−1 ⊕ ((si ⊕ COMP0 i) . (si+1 ⊕ COMP1 i)); ŝ0 = 0; ŝ99 = s98.
– If CONTROL BIT S = 0:

• For 0 ≤ i ≤ 99, s′i = ŝi ⊕ (FB0 i .FEEDBACK BIT)

– If instead CONTROL BIT S = 1:

• For 0 ≤ i ≤ 99, s′i = ŝi ⊕ (FB1i .FEEDBACK BIT)

12 Steve Babbage and Matthew Dodd

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

COMP0 i 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1

COMP1 i 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0

FB0 i 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1

FB1 i 1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1

i 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

COMP0 i 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0

COMP1 i 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0

FB0 i 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1

FB1 i 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 0

i 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

COMP0 i 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 1

COMP1 i 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0

FB0 i 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1

FB1 i 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 0 1

i 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

COMP0 i 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1

COMP1 i 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 0

FB0 i 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0

FB1 i 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1 1

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

COMP0 i 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1 1

COMP1 i 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 0

FB0 i 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0

FB1 i 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1
Table 1. S register tables for MICKEY

Clocking the overall generator We define an operation CLOCK KG (R, S, MIXING ,
INPUT BIT) as follows:

– If MIXING = TRUE ,
• CLOCK R (R, INPUT BIT R = INPUT BIT ⊕ s50, CONTROL BIT R = s34 ⊕ r67)

– If instead MIXING = FALSE ,
• CLOCK R (R, INPUT BIT R = INPUT BIT , CONTROL BIT R = s34 ⊕ r67)

– CLOCK S (S,INPUT BIT S = INPUT BIT , CONTROL BIT S = s67 ⊕ r33)

A.4 Key loading and initialisation

The registers are initialised from the input variables as follows:

– Initialise the registers R and S with all zeros.
– (Load in IV .) For 0 ≤ i ≤ IVLENGTH − 1:

• CLOCK KG (R, S, MIXING = TRUE , INPUT BIT = ivi)

– (Load in K.) For 0 ≤ i ≤ 79:
• CLOCK KG (R, S, MIXING = TRUE , INPUT BIT = ki)

– (Preclock.) For 0 ≤ i ≤ 99:
• CLOCK KG (R, S, MIXING = TRUE , INPUT BIT = 0)

A.5 Generating keystream

Having loaded and initialised the registers, we generate keystream bits z0 . . . zL−1 as follows:

– For 0 ≤ i ≤ L− 1:
• zi = r0 ⊕ s0
• CLOCK KG (R, S, MIXING = FALSE , INPUT BIT = 0)

The MICKEY stream ciphers 13

B Specification of the cipher MICKEY-128

In this appendix, we provide a full specification of the stream cipher MICKEY-128 (version 2.0).

B.1 Input and output parameters

MICKEY-128 takes two input parameters:

– a 128-bit secret key K, whose bits are labelled k0 . . . k127;

– an initialisation variable IV , anywhere between 0 and 128 bits in length, whose bits are
labelled iv0 . . . iv IVLENGTH−1.

The keystream bits output by MICKEY-128 are labelled z0, z1, Ciphertext is produced from
plaintext by bitwise XOR with keystream bits, as in most stream ciphers.

B.2 Acceptable use

The maximum length of keystream sequence that may be generated with a single (K, IV) pair is
264 bits. It is acceptable to generate 264 such sequences (time permitting!), all from the same K
but with different values of IV . It is not acceptable to use two initialisation variables of different
lengths with the same K. And it is not, of course, acceptable to reuse the same value of IV with
the same K.

B.3 Components of the keystream generator

The registers The generator is built from two registers R and S. Each register is 160 stages
long, each stage containing one bit. We label the bits in the registers r0 . . . r159 and s0 . . . s159
respectively.

Broadly speaking, we think of R as ‘the linear register’ and S as ‘the non-linear register’.

Clocking the register R Define a set of feedback tap positions for R:

RTAPS = {0, 4, 5, 8, 10, 11, 14, 16, 20, 25, 30, 32, 35, 36, 38, 42, 43, 46, 50,
51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 69, 73, 74, 76, 79, 80,
81, 82, 85, 86, 90, 91, 92, 95, 97, 100, 101, 105, 106, 107, 108,
109, 111, 112, 113, 115, 116, 117, 127, 128, 129, 130, 131, 133,
135, 136, 137, 140, 142, 145, 148, 150, 152, 153, 154, 156, 157}

We define an operation CLOCK R (R, INPUT BIT R, CONTROL BIT R) as follows:

– Let r0 . . . r159 be the state of the register R before clocking, and let r′0 . . . r
′
159 be the state of

the register R after clocking.

– FEEDBACK BIT = r159 ⊕ INPUT BIT R

– For 1 ≤ i ≤ 159, r′i = ri−1; r
′
0 = 0

– For 0 ≤ i ≤ 159, if i ∈ RTAPS , r′i = r′i ⊕ FEEDBACK BIT

– If CONTROL BIT R = 1:

• For 0 ≤ i ≤ 159, r′i = r′i ⊕ ri

14 Steve Babbage and Matthew Dodd

Clocking the register S Define four sequences (COMP0 i)
158
i=1, (COMP1 i)

158
i=1, (FB0 i)

159
i=0 and

(FB1 i)
159
i=0 according to Table 2.

We define an operation CLOCK S (S, INPUT BIT S , CONTROL BIT) as follows:

– Let s0 . . . s159 be the state of the register S before clocking, and s′0 . . . s
′
159 be the state of the

register after clocking. We will also use ŝ0 . . . ŝ159 as intermediate variables to simplify the
specification.

– FEEDBACK BIT = s159 ⊕ INPUT BIT S

– For 1 ≤ i ≤ 158, ŝi = si−1 ⊕ ((si ⊕ COMP0 i) . (si+1 ⊕ COMP1 i)); ŝ0 = 0; ŝ159 = s158.

– If CONTROL BIT S = 0:

• For 0 ≤ i ≤ 159, s′i = ŝi ⊕ (FB0 i .FEEDBACK BIT)

– If instead CONTROL BIT S = 1:

• For 0 ≤ i ≤ 159, s′i = ŝi ⊕ (FB1i .FEEDBACK BIT)

Clocking the overall generator We define an operation CLOCK KG (R, S, MIXING ,
INPUT BIT) as follows:

– If MIXING = TRUE ,

• CLOCK R (R, INPUT BIT R = INPUT BIT ⊕ s80, CONTROL BIT R = s54 ⊕ r106)

– If instead MIXING = FALSE ,

• CLOCK R (R, INPUT BIT R = INPUT BIT , CONTROL BIT R = s54 ⊕ r106)

– CLOCK S (S, INPUT BIT S = INPUT BIT , CONTROL BIT S = s106 ⊕ r53)

B.4 Key loading and initialisation

The registers are initialised from the input variables as follows:

– Initialise the registers R and S with all zeros.

– (Load in IV .) For 0 ≤ i ≤ IVLENGTH − 1:

• CLOCK KG (R, S, MIXING = TRUE , INPUT BIT = ivi)

– (Load in K.) For 0 ≤ i ≤ 127:

• CLOCK KG (R, S, MIXING = TRUE , INPUT BIT = ki)

– (Preclock.) For 0 ≤ i ≤ 159:

• CLOCK KG (R, S, MIXING = TRUE , INPUT BIT = 0)

B.5 Generating keystream

Having loaded and initialised the registers, we generate keystream bits z0 . . . zL−1 as follows:

– For 0 ≤ i ≤ L− 1:

• zi = r0 ⊕ s0
• CLOCK KG (R, S, MIXING = FALSE , INPUT BIT = 0)

The MICKEY stream ciphers 15

References

1. S. Babbage, Improved Exhaustive Search Attacks on Stream Ciphers, European Convention on Security and
Detection, IEE Conference Publication no. 408, pp. 161–166, IEE, 1995.

2. S.H.Babbage, M.W.Dodd, The stream cipher MICKEY (version 1), Algorithm specification Issue 1.0,
ECRYPT stream cipher submission, in the proceedings of the SKEW Workshop (Århus, May 2005), and
available at http://www.ecrypt.eu.org/stream/ciphers/mickey/mickey.pdf.

3. S. H.Babbage, M.W.Dodd, The stream cipher MICKEY-128 (version 1), Algorithm specification Issue 1.0,
ECRYPT stream cipher submission, in the proceedings of the SKEW Workshop (Århus, May 2005), and
available at http://www.ecrypt.eu.org/stream/ciphers/mickey128/mickey128.pdf.

4. S. H.Babbage, M.W.Dodd, The stream cipher MICKEY 2.0, revised ECRYPT stream cipher submission,
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickeyp3.pdf.

5. S. H.Babbage, M.W.Dodd, The stream cipher MICKEY-128 2.0, revised ECRYPT stream cipher submission,
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey128_p3.pdf.

6. S. H.Babbage, M.W.Dodd, Finding Characteristic Polynomials with Jump Indices, http://eprint.iacr.
org/2006/010.

7. A.Biryukov and A. Shamir, Cryptanalytic time/memory/data tradeoffs for stream ciphers, Asiacrypt 2000,
LNCS 1976, pp1–13, Springer-Verlag, 2000.

8. A.Biryukov, A. Shamir and D.Wagner, Real time cryptanalysis of A5/1 on a PC, FSE 2000, LNCS 1978,
pp1–18, Springer-Verlag, 2001.

9. E.Dawson, A.Clark, J.Golić, W.Millan, L. Penna, L. Simpson, The LILI-128 Keystream Generator, NESSIE
submission, in the proceedings of the First Open NESSIE Workshop (Leuven, November 2000), and available
at http://www.cryptonessie.org.

10. P. Ekdahl, T. Johansson: Another attack on A5/1, IEEE Transactions on Information Theory 49(1): 284-289
(2003).

11. Algorithm performance pages on the eStream web site: http://www.ecrypt.eu.org/stream/sw.html and
http://www.ecrypt.eu.org/stream/hw.html.

12. J. Hong, W.Kim, TMD-Tradeoff and State Entropy Loss Considerations of Streamcipher MICKEY, http://
eprint.iacr.org/2005/257. (A similar — identical? — paper is included in the proceedings of INDOCRYPT
2005.)

13. J. Hong, P. Sarkar, Rediscovery of Time Memory Tradeoffs, http://eprint.iacr.org/2005/090.
14. C. J.A. Jansen, Streamcipher Design: Make your LFSRs jump!, presented at the ECRYPT SASC (State of

the Art in Stream Ciphers) workshop, Bruges, October 2004, and in the workshop record at http://www.

isg.rhul.ac.uk/research/projects/ecrypt/stvl/sasc-record.zip.
15. A.Maximov, T. Johansson, S. Babbage, An Improved Correlation Attack on A5/1, in Helena Handschuh,

M. Anwar Hasan (Eds.): Selected Areas in Cryptography 2004 (ed Handschuh/Hasan), Lecture Notes in
Computer Science #3357, Springer Verlag.

16 Steve Babbage and Matthew Dodd

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

COMP0 i 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1 0

COMP1 i 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 0 1

FB0 i 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 1

FB1 i 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0

i 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

COMP0 i 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0

COMP1 i 1 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1

FB0 i 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0

FB1 i 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1

i 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

COMP0 i 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1

COMP1 i 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 1 0 1 1 1

FB0 i 1 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1

FB1 i 0 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0

i 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

COMP0 i 1 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0

COMP1 i 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1

FB0 i 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0

FB1 i 1 1 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

COMP0 i 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0

COMP1 i 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0

FB0 i 1 0 1 0 0 1 1 1 0 1 1 0 0 1 1 0 1 0 0 0

FB1 i 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0

i 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

COMP0 i 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 0 1

COMP1 i 0 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 0

FB0 i 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0

FB1 i 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 0

i 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

COMP0 i 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1 0

COMP1 i 0 1 1 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1

FB0 i 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 1

FB1 i 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0

i 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

COMP0 i 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0

COMP1 i 1 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1

FB0 i 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1

FB1 i 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0 0
Table 2. S register tables for MICKEY-128

