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1 Introduction

Since Siegenthaler published his well-known papers dealing with correlation attacks on stream
ciphers, much research has focused on his idea of modelling keystream produced by linearly
clocking stream ciphers as noisy shift register sequences. That this model arises so often in
practise is due to the fact that any function GF (2n) → GF (2) is correlated to some linear
function GF (2n) → GF (2). The observation that there is generally simultaneous correlation
to many such linear functionals leads one to consider launching attacks using correlation to
functionals in vector spaces of various sizes.

Now a function f : GF (2n) → GF (2) is completely characterised by its correlation to
all functionals. It turns out that the correlations to the elements of subspaces of functionals
characterise “reduced” (generally non-deterministic) versions of f , such as those obtained when
random bits provide some of the inputs. As a consequence, attacks based on correlations to
spaces of linear functionals turn out to be the same as attacks attempting to determine a most
likely key, or component of a key, given that the keystream was generated on the (generally)
“non-deterministic” keystream generator with “reduced” output function or “reduced” key space
rather than the original one. A more precise formulation of what we mean by such maximum
likelihood attacks will be the starting point of this paper.

2 Maximum likelihood attacks on stream ciphers

2.1 The keystream generator

Throughout this paper we shall be considering a keystream generator with state space V , state
transition function T : V → V , and output function f : V → {0, 1}. Later on, we shall require
that f is (approximately) balanced — that is, it takes the values 0 and 1 (approximately) equally
often : this will be true of any good keystream generator used to protect privacy. We shall identify
V with the vector space of n-bit vectors over GF (2).

The generator is initially loaded with a key, so that the keystream bits b1, . . . , bN it produces
satisfy

bi = f(T ix) (i = 1, . . . , N) (1)

when x assumes the value of the key.

2.2 Maximum likelihood attack

First of all, a definition : for any function g : V → R and subspace S ≤ V , we define a “reduced”
version, gS , of g, by taking, for each x ∈ V , gS(x) to be the random variable which assumes the
values 0 and 1 with the probability that g assumes that value on a uniformly selected element
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of the coset x+S⊥(S⊥is the space of vectors of V whose inner product with every element of S
is 0).

Now we observe that for any subspace U ≤ V , the equations (1) can be reduced to

bi = fU (T ix) (i = 1, . . . , N), (2)

corresponding to a reduction of the output function, or to

bi = f ◦ T i
U (x) (i = 1, . . . , N), (3)

corresponding to a reduction of the key space; we will also use a common symbolism

bi = gi(x) (i = 1, . . . , N). (4)

For either of these reductions we may attempt to determine the most likely x ∈ V given the
probabilistic equations hold; that is, maximise

Pr(x|gi(x) = bi ∀i ∈ {1, . . . , N}) (5)

= Pr(gi(x) = bi ∀i|x) Pr(x)/Pr(b1, . . . , bN ).

Thus for equiprobable initial states and given keystream, x equivalently maximises

Pr(gi(x) = bi ∀i) =
N∏
i=1

Pr(gi(x) = bi).

In the case of reduction (2), this probability can be computed, for each value of x, in time
N . The reduction (3) is in general less tractable, but we shall see later that this is not so when
state transition is linear.

In section 6 we shall use a reformulation of the maximum likelihood condition, which makes
use of the limit ln(1 + x) = x + O(x2) as x→ 0 in the case when all Pr(gi(x) = 0) ≈ 1

2 : in this
case, maximising (5) is equivalent to maximising

ln

(
(12)−N

N∏
i=1

Pr(gi(x) = bi)

)

=
N∑
i=1

ln(Pr(gi(x) = bi)/
1
2)

≈
N∑
i=1

(2 Pr(gi(x) = bi)− 1) (6)

=
N∑
i=1

E((−1)gi(x)⊕bi).

2.3 Uniqueness of maximum likelihood solutions

In this section we observe that the reduced equations (2) or (3) may not yield a unique most
likely solution x. This is apparent in the case of (3), where x can only possibly be determined
up to a coset x + U⊥.

To see that ambiguity is possible also for (2), observe that we can have a subspace W of V
containing U such that T is well-defined on cosets x+W⊥. (Such a W will usually arise from a
decomposition of the keystream generator states into those of two sub-generators : that is, up to
a reordering of positions in a vector of V , we have a cartesian product V = W ×W⊥ (identifying
W with the subspace {(w, 0) : w ∈ W}, and similarly for W⊥) for W (and W⊥) closed under
T .) Now fU the same distribution on all elements in a coset x + U⊥ ⊇ x + W⊥, and hence is
well-defined on cosets x + W⊥. These properties of T and fU together imply that (2) can only
determine x up to a coset x + W⊥.
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2.4 How large N should be

We now address the question : how large need N be in order that the most likely coset of
solutions to equations (4) is the correct one, i.e. is the coset of the initial state of the generator?
We answer this by way of a corollary to the following theorem.

A theorem of Brynielsson [1]

Theorem 1. Let a and b be two distributions on K objects, taking values with probabilities aj
and bj (j = 1, . . . ,K) respectively; X be a uniform random variable on {1, . . . ,M}; Yi (i =
1, . . . ,M) be independent random variables having the multinomial distribution M(N, a) for
i = X, but the multinomial distribution M(N, b) for i 6= X; and, lastly, yi be an observation
of Yi (i = 1, . . . ,M). Denote by d(a, b) the directed divergence

∑K
j=1 aj log(aj/bj), and by pi

(i = 1, . . . ,M) the probability

Pr(X = i|Y1 = y1, . . . , YM = yM ).

Then the ordering on the i induced by the pi is the same as that induced by the likelihood
ratio

Pr(yi is an observation of M(N, a))

Pr(yi is an observation of M(N, b))
,

and the probability that X is amongst the k greatest values of i under this ordering (for any k
such that K � log(M/k)/d(a, b)) is approximately{

0 if N < log(M/k)/d(a, b)
1 if N > log(M/k)/d(a, b)

(for large M).

A corollary

Corollary 1. Suppose that we have an array gi(x) (i = 1, . . . , N ;x ∈ V ) of Bernoulli random
variables, taking value 0 with probabilities pi,x, for which (for any i) gi(x) is the same distribution
as gi(y) when x and y are in the same coset, but otherwise are independent distributions; the
gi(x) (for fixed x) are independent; the parameters pi,x are themselves (for pairs of i and pairs of
x in different cosets) known independent realisations of some a priori distribution D with mean
1
2 ; and (bi)

N
i=1 is an observation of (gi(x))Ni=1 for (any) x in some particular coset — that of x0,

say. Then, for large number 2s of cosets, the maximum likelihood method determines the coset of
x0 after N ≈ s/I(gi(x);x) observations of gi(x0), where I(gi(x);x) denotes the average mutual
information (averaged over D) between gi(x) and x.

Proof. If necessary, replace D by an approximation taking

K � s/I(gi(x);x)

values, and make appropriate approximations in what follows.
Fix any x. For each i, there are 2K possibilities :

bi = b and Pr(gi(x) = 0) = p,

for b = 0, 1 and each probability p associated with D, and these possibilities themselves have
probabilities pairwise independent for distinct indices i. The sequence yx = (Nx;b,p)b=0,1;p∈D,
where

Nx;b,p = # of times bi = b and pi,x = p,
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is an observation of the multinomial distribution on N observations of independent events with
these 2K probabilities.

For x ∈ the coset of x0, these 2K probabilities are

Pr(bi = 0, pi,x = p) = pPr(pi,x = p)

Pr(bi = 1, pi,x = p) = (1− p) Pr(pi,x = p),

defining a distribution a, while for other x

Pr(bi = b, pi,x = p)

= Pr(bi = b) Pr(pi,x = p) by independence

= 1
2 Pr(pi,x = p) by balance,

defining a distribution b.
Writing, for convenience, Pr(p) for Pr(pi,x = p), the directed divergence d(a, b) is(∑

p

pPr(p) log
pPr(p)
1
2 Pr(p)

)
+

(∑
p

(1− p) Pr(p) log
(1− p) Pr(p)

1
2 Pr(p)

)
=
∑
p

Pr(p)(p log(p/1
2) + (1− p) log((1− p)/1

2))

= I(gi(x);x).

Thus by theorem 1,
Pr(yx is an observation of M(N, a))

Pr(yx is an observation of M(N, b))

will be maximised for x in the correct coset (i.e. that of x0) for

N ≈ (log 2s)/I(gi(x);x) = s/I(gi(x);x).

But

Pr(yx is an observation of M(N, a))

Pr(yx is an observation of M(N, b))

=

( N
(Nx;b,p)b,p

)∏
p(pPr(p)))Nx;0,p

∏
p((1− p) Pr(p)))Nx;1,p( N

(Nx;b,p)b,p

)∏
p(

1
2 Pr(p)))Nx;0,p

∏
p(

1
2 Pr(p)))Nx;1,p

= 2N
∏
p

pNx;0,p(1− p)Nx;1,p

= 2N Pr((bi)
N
i=1 comes from (gi(x))Ni=1),

whose maximisation is equivalent to the maximum likelihood method described in section 2.2.
ut

N for reduced output function In this case, we are considering the equations (2). We assume
here, and subsequently when considering unicity distance for reduced output function, that the
assumptions of the corollary apply for cosets of an m-dimensional subspace W ≤ V containing
U .

I(gi(x);x) = I(fU (T ix);x) = I(fU (x);x),

so the unicity distance is
N ≈ m/I(fU (x);x). (7)
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N for reduced key space Similarly with equations (3), if we make analogous assumptions,
we can apply the corollary to learn that the unicity distance is

N ≈ m′/I(f ◦ T i
U (x);x),

where m′ denotes the dimension of U⊥.
We shall develop this result further in section 5.

2.5 An observation concerning “correlation immunity”

Following Siegenthaler [5], we define a function f(x1, . . . , xn) to be correlation-immune to a set
{i1, . . . , im} of input positions if

I(f(x1, . . . , xn);xi1 , . . . , xim) = 0.

This mutual information is equal to

I(fU (x);x)

where U is the subspace of V generated by the i1th, . . . , imth standard basis vectors. Thus, by
equation (7), if f is correlation-immune, the maximum likelihood method will fail no matter
how much keystream is considered.

3 Correlation attacks on linearly clocking stream ciphers

Henceforth we focus our attention on the case where state transition is an invertible linear
transformation on V; we will represent it as A, rather than T , and consider A to be an n × n
matrix. (As a point of interest, we note that A is similar to a matrix in rational canonical form,
so that, with no loss of generality, the generator can be taken to comprise a number of separate
Galois-clocking LFSRs.)

This section will review some “traditional” theory of correlation attacks; in section 6 we will
reformulate these ideas in the language of section 2, which will cast new light on existing attacks
and produce some new ones.

3.1 Linear correlations to f

Linear correlation attacks exploit correlation between f and linear functions on V i.e. functionals
∈ V ∗. For any function g : V → {0, 1} we define the correlation cg,v of g to the functional “·v”
by

cg,v := Pr(g(x) = x · v)− Pr(g(x) 6= x · v).

For convenience, we will write cv for a correlation cf,v of our keystream generator’s output
function f .

Observing that the set of all ±1-valued functionals {x 7→ (−1)x.v}v∈V is a complete orthog-
onal subset of the real vector space of real-valued functions V → R with inner product

〈g1, g2〉 =
∑
v∈V

g1(v)g2(v),

we can apply Parseval to (−1)g to learn that

‖ (−1)g ‖2=
∑
v∈V

(〈g, 2−n/2(−1)·v〉)2,

whence ∑
v∈V

c2g,v = 1.

In particular, cg,v is non-zero for at least one v ∈ V .
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3.2 Linear correlation attack

Fix a v for which cv 6= 0, and let W be any A-invariant subspace of V containing v; as usual,
put m = dim W .

The sequences of bits (f(Aix))i generated by the KG can be written (((Aix) · v) ⊕ ei,x)i,
where the ei,x are modelled as independent Bernoulli random variables which take the value 0
with probability (1 + cv)/2 6= 1

2 . Thus the KG generates “noisy LFSR sequences”. Considerable
research effort has been directed towards the efficient implementation of minimum distance
decoding of such sequences (when the error probability < 1

2) to the underlying linear sequence.
No published algorithm known to the author solves this problem in full generality with time
complexity < 2m (but see Dodd [2]). Siegenthaler [6] presents the straightforward method : to
maximise (or minimise) the number of agreements (“correlation”) between each of the possible
underlying linear sequences and the keystream. This method has time complexity N2m. Later,
in section 6, we shall characterise Siegenthaler’s attack in terms of the language of section 2.

As previously observed by Mund et al. [4], a more efficient method, borrowed from the theory
of decoding first-order Reed-Muller codes (see, e.g., MacWilliams and Sloane [3]) makes use of
the Walsh-Hadamard transform. Before describing this method, we introduce some notation and
results concerning the Walsh-Hadamard transform.

3.3 The Walsh-Hadamard transform

For any subspace S ≤ V and real-valued function g on S, the Walsh-Hadamard transform TS(g)
of g on S is also a real-valued function on S, defined by

TS(g)(v) =
∑
s∈S

(−1)s·vg(s) (v ∈ S),

where · denotes the usual inner product on V .
Denoting the dimension of S by d, we have the following results :

1. The array TS(g)(v) (v ∈ S) for a function g : S → R can be computed in time d2d and space
2d real storage locations.

2. TS(TS(g)) = 2dg (g : S → R).
3. If g is a {0, 1}-valued function on S, TS((−1)g)(v) = 2dcg,v (we defined cg,x in section 3.1).
4.
∑

s∈S(TS(g)(s))2 = 2d
∑

s∈S(g(s))2 (g : S → R).

3.4 Reed-Muller decoding algorithm

We now return to the situation introduced in section 3.2, but assume also that W⊥ is A-invariant.
(In section 5.3 we shall prove that this implies W is invariant under the transpose A∗ of A.)

First of all, observe that for any x, v ∈W

(Aix) · v = (Aix)T v

= xT (A∗)iv, where A∗ denotes the transpose of A

= x · ((A∗)iv)

= x · vi, where vi = (A∗)iv ∈W .

Now we can compute

#{agreements between x · vi and bi} - #{disagreements between x · vi and bi}

=
N∑
i=1

(−1)(x·vi)⊕bi
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=
∑
w∈W

(−1)x.wh(w), putting h(w) =
∑

i:vi=w(−1)bi

= TW (h)(x),

the Walsh-Hadamard transform of h on W .

3.5 Complexity of the Reed-Muller attack

Using the results cited in section 3.3, we can summarise the complexity of the Reed-Muller
attack (the corresponding parameters for Siegenthaler’s attack are shown in brackets) :

– time complexity = m2m + N (N2m);

– space complexity = 2m (0).

3.6 Two significant observations

These two attacks, relying on correlation to the single functional “·v”, appear, heuristically, to
waste information as compared to the maximum likelihood attack. Generally, many cv will be
non-zero, corresponding to simultaneous correlation of the keystream to many linear sequences.
Moreover we can see from the results of section 3.3 that any function f : V 7→ {0, 1} is charac-
terised by TV ((−1)f ) and so also by its correlations (cv)v∈V to linear functionals.

These observations will be explored subsequently in this paper.

4 Characterising a function by correlations to linear functionals

Given a real-valued function g on V , what function is characterised by the correlations of g to
the functionals in a subspace S∗ of V ∗ i.e. by the correlations (cg,s)s∈S for a subspace S of V ?
We now demonstrate that these correlations in fact characterise gS .

Lemma 1. For any S ≤ V ,

TV (E((−1)fS ))(v) =

{
TV ((−1)f )(v) if v ∈ S
0 otherwise,

where E denotes expected value.

Proof.

TV (E((−1)fS ))(v) =
∑
v′∈V

(−1)v
′·vE((−1)fS(v′))

=
∑
v′∈V

(−1)v
′·v 1

|S⊥|
∑

s∈S⊥
(−1)f(v

′+s)

=
1

|S⊥|
∑

v′′∈V,s∈S⊥
(−1)(v

′′+s)·v(−1)f(v
′′)

=
1

|S⊥|
∑

s∈S⊥
(−1)s·vTV ((−1)f )(v)
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Now S = (S⊥)⊥ (S ⊆ (S⊥)⊥ and they have the same dimension1), so that if v 6∈ S, ∃s′ ∈ S⊥

such that v · s′ = 1; then ∑
s∈S⊥

(−1)s·v =
∑

s∈S⊥
(−1)(s+s′)·v

= −
∑

s∈S⊥
(−1)s·v,

so this sum is 0. If v ∈ S,
∑

s∈S⊥
(−1)s·v = |S⊥|. Hence the result. ut

Corollary 2. gS is characterised by the (cg,s)s∈S.

5 The unicity distance N in terms of correlations

In this section we demonstrate that the expressions for the unicity distances obtained in sec-
tion 2.4 can be couched in terms of the correlations cv of the output function f .

5.1 Information in terms of correlations

Proposition 1. If S ≤ V is any subspace and g : V → R any balanced function for which all
Pr(gS(x) = 0) ≈ 1

2 , then we can approximate

I(x; gS(x)) ≈ 1

2 ln 2

∑
s∈S

c2s.

Proof. As a preliminary, we use the Taylor expansion

ln(1 + x) = x− 1

2
x2 +

1

3
x3 · · ·

to establish that :-

i(p) := p ln(p/1
2) + q ln(q/1

2) (where q = 1− p)

= p[(2p− 1)− 1

2
(2p− 1)2 +

1

3
(2p− 1)3 · · ·] +

q[(2q − 1)− 1

2
(2q − 1)2 +

1

3
(2q − 1)3 · · ·]

= p[(p− q)− 1

2
(p− q)2 +

1

3
(p− q)3 · · ·] +

q[−(p− q)− 1

2
(p− q)2 − 1

3
(2q − 1)3 · · ·]

=
1

2
(p− q)2 +

1

12
(p− q)4 + · · ·

≈ 1

2
(p− q)2 for p ≈ 1

2 .

1 Let X be any subspace of V . If M is a matrix whose columns are a basis of X, im M ' V/ker M , so dim im
M = dim V - dim ker M ; but im M = X and ker M = X⊥, so dim X = dim V - dim X⊥. Applying this twice,
dim (S⊥)⊥ = dim V - dim S⊥= dim V - (dim V - dim S) = dim S.
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Now we compute

I(x; gS(x)) = H(gS(x))−H(gS(x)|x)

= 1−
∑
x∈V

Pr(x)

(
1− 1

ln 2
i(Pr(gS(x) = 0))

)

=
1

ln 2
2−n

∑
x∈V

i(Pr(gS(x) = 0))

≈ 1

2 ln 2
2−n

∑
x∈V

(Pr(gS(x) = 0)− Pr(gS(x) = 1))2

=
1

2 ln 2
2−n

∑
x∈V

E((−1)gS(x))2

=
1

2 ln 2
2−n2−n

∑
v∈V

TV (E((−1)gS ))(v)2 (by 3.3, point 4)

=
1

2 ln 2
2−2n

∑
s∈S

TV ((−1)g)(s)2 (by section 4)

=
1

2 ln 2

∑
s∈S

c2g,s (by 3.3, point 3).

ut

(Notice that, with our assumption that g is balanced, cg,0 = 0.)

5.2 Unicity distance when reducing the output function

Now that state transition is linear, A is well-defined on the cosets of a subspace of V if and
only if that subspace is A-invariant; and since the intersection of any two A-invariant subspaces
containing U ≤ V is also an A-invariant subspace containing U , there there is a smallest such
subspace, W (which will also be the smallest subspace of V containing U for which A is well-
defined on cosets of W⊥). As before, let m = dimW .

As we stated in equation (7), the unicity distance when reducing the output function f to
fU is

N ≈ m/I(x; fU (x)).

Applying the result of proposition 1, we see that

N ≈ 2m ln 2∑
u∈U c2u

,

or
N ≈ m∑

u∈U c2u
.

5.3 Unicity distance when reducing the key space

Similarly in this case, section 2.4 gives the unicity distance in terms of I(x; (f ◦Ai)U ). To
compute this information using proposition 1, we first compute

TV ((−1)f◦A
i
)(v) =

∑
v′∈V

(−1)v·v
′
(−1)f(A

iv′)

=
∑
v′∈V

(−1)v
T v′(−1)f(A

iv′)
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=
∑
v′′∈V

(−1)v
TA−iv′′(−1)f(v

′′)

=
∑
v′′∈V

(−1)((A
∗)−iv)T v′′(−1)f(v

′′)

= TV ((−1)f )((A∗)−iv)

= 2nc((A∗)−iv) by section 3.3, point 3. (8)

Therefore, by proposition 1,

I(x; f ◦Ai
U ) ≈ 1

2 ln 2

∑
v∈U

c2((A∗)−iv). (9)

Now we wish to average this over values i, but in order to do this, we need some preliminary
results.

Lemma 2. For any subspace S ≤ V , A−1S⊥ = (A∗S)⊥.

Proof. For any v, v′ ∈ V ,

(Av) · v′ = (Av)T v′ = vT (A∗v′) = v · (A∗v′);

Therefore

v ∈ (A∗S)⊥ ⇔ v · (A∗s) = 0 for all s ∈ S

⇔ Av · s = 0 for all s ∈ S

⇔ Av ∈ S⊥

⇔ v ∈ A−1S⊥

ut

Corollary 3. A subspace S ≤ V is A∗-invariant ⇔ S⊥ is A-invariant.

Proof.

S = A∗S ⇔ S⊥ = (A∗S)⊥

⇔ S⊥ = (A−1)S⊥

⇔ AS⊥ = S⊥

ut

Now we see that W is also the smallest A∗-invariant subspace of V containing U , and that the
subspaces (A∗)−1U (i = 1, . . . , N) will include the non-zero elements of W with approximately
equal probabilities 2m

′−m (recall that m′ = dimU). And since c0=0, the average value of the
right hand side of equation (9) is

1

2 ln 2
2m
′−m ∑

w∈W
c2w.

Hence

N ≈ 2m−m
′ m′∑

w∈W c2w
, (10)

In particular, if W = V , or if each c2v ≈ 2−n,

N ≈ m′2n−m
′
. (11)
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6 Maximum likelihood attacks in terms of correlations

6.1 Reformulation of a maximum likelihood condition

In section 2, we saw that elements x of the most likely coset of initial keystream generator states
given observed keystream (bi)

N
i=1 maximise

N∑
i=1

E((−1)gi(x)⊕bi) (12)

in the case where all Pr(gi(x) = 0) ≈ 1
2 .

In the following sections, we shall reformulate this condition — in the case of reduced output
function or reduced key space — in terms of the correlations cv of f , and explore cryptanalytic
methods they suggest.

6.2 Reformulation for reduced output function

Considering (12) in the case where gi(x) = fU (Aix), we first note that

TV (E((−1)fU ))(v) =

{
2ncv if v ∈ U
0 otherwise

= TV (
∑
u∈U

cu(−1)·u)(v).

Therefore

E((−1)fU (x))) =
∑
u∈U

cu(−1)x·u,

and we can rewrite (12) as follows :

N∑
i=1

E((−1)gi(x)⊕bi) =
N∑
i=1

(−1)biE((−1)fU (Aix))

=
N∑
i=1

∑
u∈U

cu(−1)(A
ix)·u⊕bi . (13)

6.3 Cryptanalytic applications

In this section we present two observations concerning the use of expression (13) in maximum
likelihood attacks. Throughout the section we suppose V = W ⊕W⊥, so that each coset of W⊥

has a (unique) representative in W , and consequently we need only evaluate (13) for x ∈W .

Siegenthaler’s method If we put U = 〈v〉, maximising (13) over x amounts to maximising

cv

N∑
i=1

(−1)(A
ix)·v⊕bi ,

which is just Siegenthaler’s “closest fit” method. A corollary of section 5 is that this method
succeeds with about m/c2v bits of keystream.
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Generalised “Reed-Muller method” A speedup akin to that of section 3.4 can be obtained
for the task of finding maximum likelihood solutions for any output function reduction, by
writing (13) as

N∑
i=1

∑
u∈U

cu(−1)(A
ix)·u⊕bi =

N∑
i=1

∑
v∈U

cv(−1)x·(A
∗iv)⊕bi

= TW (h)(x),

where h(x) =
∑

v,i:A∗iv=x cv(−1)bi (x ∈W ).

The vector of all values of h can be computed in time 2m
′
N , so (13) can be computed for all

cosets in time m2m + N2m
′

and space 2m, rather than time N2m and negligible space : quite a
remarkable result!

6.4 Reformulation for reduced key space

In this case, gi(x) = f ◦Ai
U (x), and expression (12) is

N∑
i=1

E((−1)f◦A
i
U (x)⊕bi)

= 2−nTV (TV (
N∑
i=1

E((−1)f◦A
i
U⊕bi)))(x) by section 3.3, point 2

= 2−nTV (
N∑
i=1

TV (E((−1)f◦A
i
U⊕bi)))(x) by the linearity of TV

=
∑
u∈U

(−1)x·u(
N∑
i=1

(−1)bic(A∗)−iu) using lemma 1 and (8). (14)

6.5 More cryptanalytic applications

In this section, we show that (14) can provide a practical vehicle for cryptanalytic attack if the
correlations cv of f vanish outside some subspace X of dimension r which is not too large. (This
will be the case if f depends only on a small number r of state bits.)

We assume V = U ⊕U⊥, so that each coset of U⊥ has a unique representative in U , and we
can perform a maximum likelihood attack by maximising (14) over x ∈ U . Thus the outer sum
in (14) is a Walsh-Hadamard transform on U , which we can compute in time m′2m

′
and space

2m
′
.

Terms of the inner sum in (14) contribute only when c(A∗)−iu 6= 0, so we need only compute

c(A∗)−iu for those u ∈ U for which (A∗)−iu ∈ X i.e. for u ∈ U ∩A∗iX. To see how many such u
there are for each i, we apply the following lemma.

Lemma 3. For a random r-dimensional subspace S of V , dim (S ∩ U) ≈ r + m′ − n.

Proof. The expected size of S ∩ U\{0} is (2n − 1)× the probability that a random element of
V \{0} is in both S\{0} and U\{0}, i.e.

(2n − 1)× (2r − 1)/(2n − 1)× (2m
′ − 1)/(2n − 1) ≈ 2r+m′−n.

ut



Simultaneous Correlation to Many Linear Functionals 13

Thus if we model each A∗iX as a random r-dimensional subspace of V , dim (U ∩ A∗iX)
≈ r + m′ − n, and its elements can be efficiently computed2 in time max{1, 2r+m′−n}.

Combining all this, we see that we can compute (14) for all cosets of x with

– time complexity = m′2m
′
+ N max{1, 2r+m′−n};

– space complexity = 2m
′
;

– number N of required keystream bits given by (10).

For r ≤ n/2, and W = V , the value for dim U which minimises the time complexity is
m′ = n/2, when

– time complexity = n2n/2;
– space complexity = 2n/2;
– number N of required keystream bits = (n/2)2n/2 (by equation (11)).

6.6 Why less keystream may be required

Suppose r < n/2 and let s be maximal such that rs ≤ n/2. Given N ′ bits of keystream, we can

construct
(N ′
s

)
“reduced” equations for the initial key :

g(i1,...,is)U (x) = bi1 ⊕ · · · ⊕ bis , (1 ≤ ij ≤ N ′, j = 1, . . . , s)

where we have defined

g(i1,...,is)(x) :=
s⊕

j=1

f(Aijx).

The transform of (−1)g(i1,...,is) is the convolution of the transforms of the (−1)f◦A
ij

; con-
sequently it vanishes outside a subspace of dimension rs. Now essentially the method of the
previous section applies, with required number N ′ of required known keystream bits satisfying(N ′

s

)
≈ N,

i.e., for s� N ,
N ′ ≈ (N.s!)1/s.

6.7 Example

To perform a known keystream attack on the sequence generator illustrated in figure 1, we can
choose U to be the set of states whose first 32 bits are 0. Then U⊥ is the set of states whose
last 32 bits are 0, W = V , n = m = 64, m′ = 32, N = 32.264−32, r = 8, s = 4, and the attack
will determine the last 32 bits of the initial state with

– time complexity ≈ 64.232 = 238;
– space complexity = 232;
– number N ′ of required keystream bits ≈ (32.232.4!)1/4 ≈ 210·4.

6.8 A brief observation concerning probabilistic f

The techniques of this section may be applicable even when some inputs to f are not known
linear functions of the initial state, but instead can be modelled as independent random bits :
their effect may then be absorbed by a suitable choice of U .

2 In the case when U is a subspace whose elements are precisely those with 0 entries in certain coordinate
positions, straightforward Gaussian elimination can be used.
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64 stage LFSR (primitive feedback)

6

��
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�
�
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Z
Z
Z -f

(bi)
N
i=1

Fig. 1. Example keystream generator
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