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Abstract

This work explores two problems, one in information theory and one in cryp-

tology, and shows that in both cases the Discrete Fourier Transform (DFT)

can be usefully applied.

The first problem is the following:

Suppose that an originator generates an n-bit vector V according

to the uniform probability distribution on such vectors, and sends

V over a binary symmetric channel with error probability p < 1
2

to a receiver, who receives the n bits as a vector W . Is it possible

for the originator and receiver to agree on choices for balanced

n-bit to 1-bit functions f and g prior to the generation of V in

such a way that f(V ) and g(W ) agree with probability greater

than 1− p?

We show that the answer is “no” if we can prove a generalisation couched

in terms of information-theoretic measures of Rényi order α. This we do for

α = 2, using the DFT, and extensively explore the generalisation for the

case of Shannon information — α = 1 — making use of the DFT and related

ideas. Finally, we prove that the generalisation does not hold for all α ≥ 1,

n and f .

The second problem is that of known plaintext cryptanalysis of certain

types of stream cipher constructed from regularly clocking binary shift reg-

3



isters. It is shown that various types of maximum likelihood attack on the

ciphers may be approximated by reformulations in terms of DFT coefficients,

and implemented using the DFT. Moreover, the effectiveness of the attacks,

in terms of their unicity distance, can be given by expressions in the DFT

coefficients. We generalise the idea of a correlation attack, introduced by

Siegenthaler, to that of a simultaneous correlation attack, and study a num-

ber of variants; we also show that fast correlations attacks can take advantage

of simultaneous correlation.
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Chapter 1

Background Material

1.1 Overview of the Thesis

The material in this work has been divided into four chapters. Each describes

its own content in an introductory section, as section 1.2 does for this chapter.

However, it is hoped that it may assist the reader if we present here an outline

of what is covered by the whole work.

This first chapter presents standard material on which subsequent chap-

ters of the thesis will rely, in an attempt to make the thesis as self-contained

as is reasonably possible. Chapter 2 tackles a particular problem concern-

ing communication over a binary symmetric channel, which it formulates

and generalises a number of times, and presents a number of results con-

cerning information measures and the Discrete Fourier Transform (DFT) on

the elementary abelian group of order 2n, the Walsh-Hadamard transform.

In Chapter 3, we concern ourselves with another specific problem: that of

cryptanalysis of a linearly-clocking stream ciphers with memoryless output

function. We show that here again the Walsh-Hadamard transform can as-

sume an important role, from both theoretical and practical standpoints.
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Finally, in chapter 4, we present some generalisations derived from the pre-

ceding material.

1.2 Concerning This Chapter

The purpose of the remainder of this introductory chapter is to equip a reader

already blessed with a general mathematical education with specific concepts

and results concerning the principal topics of this thesis: the Discrete Fourier

Transform on a finite group, information theory and cryptology. These are

dealt with in turn in sections 1.3, 1.4 and 1.5. In doing this, we will also

establish some notation which will assist subsequent exposition. The material

presented in this chapter is all well established in the published literature of

the particular field. This is in contrast to that of subsequent chapters, which,

unless stated otherwise, is all original work of the author.

1.3 The Discrete Fourier Transform

1.3.1 Introduction

Ever since Fourier asserted in 1807 that an “arbitrary” function can be ex-

pressed as a linear combination of sines and cosines, the theory of such decom-

positions and their application to the understanding of a variety of physical

phenomena have developed together. Important in this context is the con-

cept of a Hilbert space, which is an inner product space (see definition 1.1)

with respect to whose norm (definition 1.2) it is complete i.e. every Cauchy

sequence converges. A body of theory applies to the expansion of elements

of the Hilbert space in terms of an orthogonal subset (definition 1.3). More

generally, the notion of a complete normed vector space — a Banach space

12



— is of fundamental importance in modern functional analysis.

Finite-dimensional inner product spaces — which are necessarily Hilbert

spaces — are of particular interest to us. In fact, elements of the space Cn (for

any fixed integer n ≥ 1) have a Fourier decomposition as linear combinations

of elements of the orthogonal set {(ωij)n−1
i=0 : 0 ≤ j < n}, where ω ∈ C is a

primitive nth root of unity (see section 1.3.2). The transformation mapping

an element of Cn to a corresponding linear combination — determined by the

vector’s components — of elements of the orthogonal set is a Discrete Fourier

Transform (DFT), and there is a close relationship between the DFT and its

inverse, which allows the coefficients in a Fourier decomposition of a given

element to be computed. In 1965, Cooley and Tookey presented an algorithm

— the Fast Fourier Transform (FFT) — to compute this DFT, or inverse

DFT, in time ≈ n log2 n, a dramatic improvement on the complexity n2 of

the most obvious calculations, and of significant importance in applications.

In fact for any abelian group G, we have an algebra isomorphism, or DFT,

D : CG → C|G| which preserves inner products, as we discuss in section 1.3.2.

Of immediate importance to us in chapters 2 and 3 will be the case where

G is the elementary abelian 2-group, when the Walsh-Hadamard transform

is a corresponding DFT: in view of its importance, we explicitly describe

this map and its properties in section 1.3.3. In fact, for any finite group

G, there is an isomorphism DFT : CG → ⊕h
j=1Cdj×dj (theorem 1.24); if G

is supersolvable then such a DFT can be computed in time approximately

|G| log2 |G| (theorem 1.41).

We now give the definitions 1.1–1.3 cited above, which will also be of

immediate use in the following sections.

Definition 1.1. An inner product space is a vector space V over a field F =

R or C with an inner product 〈, 〉 : V × V → F such that

13



1. 〈v, v〉 ∈ R for all v ∈ V , and is ≥ 0 with equality precisely when v = 0;

2. 〈u, v+w〉 = 〈u, v〉+〈u,w〉, 〈u+v, w〉 = 〈u, v〉+〈u,w〉 for all u, v, w ∈ V ;

3. 〈λu, v〉 = λ〈u, v〉, 〈u, λv〉 = λ̄〈u, v〉 for all u, v ∈ V , λ ∈ F.

Definition 1.2. For any v ∈ V , the norm ‖v‖ of v is the quantity 〈v, v〉 1
2 .

Definition 1.3. Two elements in an inner product space V are orthogonal

precisely when their inner product is 0. A set of elements in V is orthogonal

when its elements are non-zero and pairwise orthogonal.

Lemma 1.4. An orthogonal set S in an inner product space V is a linearly

independent set.

Proof. Suppose S is orthogonal, and
∑

s∈S λss = 0. Then for each t ∈ S

0 = 〈
∑
s∈S

λss, t〉 =
∑
s∈S

λs〈s, t〉 = λt〈t, t〉,

which, since t 6= 0 implies that λt = 0.

Finally in this section, we define two different multiplication operations

on the elements of V . Their interaction with the DFT will be of great interest

in due course.

Definition 1.5. For group G (written multiplicatively), field F, and func-

tions f, g : G → F,

1. the convolution f ⊗ g of f and g is defined by

(f ⊗ g)(a) =
∑

b,c∈G:
a=bc

f(b)g(c) for all a ∈ G;

2. the pointwise product fg of f and g is defined by

(fg)(a) = f(a)g(a) for all a ∈ G.

14



1.3.2 The DFT on an Abelian Group

1.3.2.1 Construction of a Transform

Let G denote any finite abelian group, and let V = CG, the vector space of

maps G → C. V becomes a complex inner product space if we define

〈f1, f2〉 =
∑
g∈G

f1(g)f2(g) for any f1, f2 ∈ V .

As we point out in remark 1.32 in section 1.3.4, V has an orthogonal subset

S = {fg : g ∈ G} of |G| elements for which

• fgh is the (pointwise) product fgfh for all g, h ∈ G; and

• fg is a group homomorphism G → C for each g ∈ G.

In fact we have the following:

Lemma 1.6. Suppose that S = {fg : g ∈ G} is a subset of |G| elements of

V for which

• fgh is the (pointwise) product fgfh for all g, h ∈ G; and

• fg is a group homomorphism G → C for each g ∈ G.

Then

1. f1(a) = 1 for all a ∈ G.

2. For any g ∈ G \ {1}, ∑
a∈G fg(a) = 0.

3. |fg(a)| = 1 for each fg ∈ S and any a ∈ G.

4. S is orthogonal.

5. ‖fg‖ 2 = |G| for each g ∈ G.

15



Proof. Part 1 follows from the identity f1(a) = f1(a)f1(a), and the obser-

vation that we cannot have f1(a) = 0 for any a ∈ G, since then f1(b) =

f1(a)f1(a
−1b) = 0 for all b ∈ G, and fg = f1fg = 0 for all g ∈ G, contradict-

ing |S| = |G|.
For part 2, if g 6= 1 then fg 6= f1, so there exists b ∈ G such that fg(b) 6= 1.

Then

∑
a∈G

fg(a) =
∑
a∈G

fg(ab)

=

(∑
a∈G

fg(a)

)
fg(b),

from which it follows that
∑

a∈G fg(a) = 0.

Part 3 follows from the fact that fg(a)|G| = fg|G|(a) = f1(a) = 1 (by

part 1).

To prove parts 4 and 5, suppose that g, h ∈ G. Then

〈fg, fh〉 =
∑
a∈G

fg(a)fh(a)

=
∑
a∈G

fg(a)fh(a)−1 since |fh(a)| = 1 by part 3

=
∑
a∈G

fg(a)fh−1(a) since g 7→ fg is a homomorphism

=
∑
a∈G

fgh−1(a)

=





0 if g 6= h, by part 2

|G| if g = h, by part 1,

as required.

Note that the elements of S are linearly independent, by lemma 1.4,

therefore form a basis of the |G|-dimensional vector space V .
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Example 1.7. Let G = Cn, the cyclic group of order n, which we write

additively and identify with the integers {0, 1, . . . , n − 1} under addition

mod n. Fix any primitive nth root of unity ω ∈ C. Then the set of func-

tions {fi : 0 ≤ i < n}, where fi : j 7→ ωij (0 ≤ j < n), form such a set

S.

We are now in a position to define a Discrete Fourier Transform of an

abelian group G.

Definition 1.8. We define a Discrete Fourier Transform D : V → V by the

rule

D(f)(g) =
∑

h∈G

f(h)fh(g) for all g ∈ G, f ∈ V .

We can express this in an alternative — and perhaps clearer — way after

introducing some new notation.

Notation 1.9. For each g ∈ G we denote simply by g the element of V

which maps g 7→ 1 and h 7→ 0 for h ∈ G\{g}.

Now we can write any function f ∈ V as

f =
∑
g∈G

f(g)g

and

D(
∑
g∈G

f(g)g) =
∑
g∈G

f(g)fg

Also of interest is the inverse DFT. We have the following result.

Lemma 1.10. For any f ∈ V ,

D−1(f)(g) =
1

|G| 〈f, fg〉.

17



Proof. Since S is a basis of V , we can write

f =
∑
g∈G

λgfg (1.11)

for some λg ∈ C. Then, by definition of D,

D−1(f)(g) = λg

Taking inner products of both sides of equation (1.11) with fh, for any h ∈ G,

〈f, fh〉 = 〈
∑
g∈G

λgfg, fh〉

= λh〈fh, fh〉 by linearity and orthogonality

= |G|λh by lemma 1.6, part 5.

Thus

D−1(f)(g) = λg =
1

|G|〈f, fg〉

as required.

Note that, by the definition of inner product on V , we can equivalently

write this

D−1(f)(g) =
1

|G|
∑

h∈G

f(h)fg(h).

1.3.2.2 Properties of the DFT on an Abelian Group

Some properties of the DFT on a general abelian group G are given by the

following theorem.

Theorem 1.12. For any elements f1, f2 ∈ V ,

1. 〈D(f1), D(f2)〉 = |G| 〈f1, f2〉

2. D(f1 ⊗ f2) = D(f1)D(f2)

18



3. |G|D(f1f2) = D(f1)⊗D(f2)

Proof. For the first part we compute

〈D(f1), D(f2)〉 = 〈
∑
g∈G

f1(g)fg,
∑

h∈G

f2(h)fh〉

=
∑
g∈G

∑

h∈G

f1(g)f2(h)〈fg, fh〉

=
∑
g∈G

f1(g)f2(g) ‖fg‖2 since S is orthogonal

= |G| 〈f1, f2〉 by lemma 1.6, part 5.

The second is an immediate consequence of the definition of D and the

multiplicative property of S:

D(f1 ⊗ f2)(g) =
∑

h∈G

(f1 ⊗ f2)(h)fh(g)

=
∑

h∈G

∑

a,b∈G:
ab=h

f1(a)f2(b)fab(g)

=
∑

a,b∈G

f1(a)f2(b)fa(g)fb(g)

= D(f1)(g)D(f2)(g)

For the third part, note first that for any F1, F2 ∈ V

D−1(F1 ⊗ F2)(g)

=
1

|G| 〈F1 ⊗ F2, fg〉

=
1

|G|
∑
a∈G

(F1 ⊗ F2)(a)fg(a)

=
1

|G|
∑

a,b,c∈G
a=bc

F1(b)F2(c)fg(a)
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=
1

|G|
∑

b,c∈G

F1(b)fg(b)F2(c)fg(c) because fg(a) = fg(b)fg(c)

= |G| 1

|G| 〈F1, fg〉 1

|G| 〈F2, fg〉

= |G| (D−1(F1)D
−1(F2))(g).

so that D−1(F1⊗F2) = |G|D−1(F1)D
−1(F2). Now with the choice Fi = D(fi)

for i = 1, 2, this becomes

D−1(F1 ⊗ F2) = |G| f1f2

from which

D(f1)⊗D(f2) = |G|D(f1f2)

as required.

Expressed informally, theorem 1.12 states that

1. D preserves inner product (up to a factor of |G|);

2. convolution in the “time domain” corresponds to pointwise product in

the “frequency domain”;

3. pointwise product in the “time domain” corresponds to convolution in

the “frequency domain” (up to a factor of |G|).

1.3.3 The Walsh-Hadamard Transform

In view of its particular importance in chapters 2 and 3, we devote this

section to the DFT on the elementary abelian 2-group, the Walsh-Hadamard

transform.

20



1.3.3.1 Construction of the Walsh-Hadamard Transform

First we make the following (probably superfluous) definition:

Definition 1.13. A bit (short for binary digit) is an element of the set {0, 1}.

Now the elementary abelian group G = Cn
2 of order 2n may be identified

with the set {0, 1}n of n-bit vectors, with group operation +, written addi-

tively, defined to be componentwise addition modulo 2. As in section 1.3.2

above, the set CG of complex-valued functions on G is a complex inner prod-

uct space V of dimension 2n.

Now we define a set S of 2n functions in V by the rule

fv(u) = (−1)u·v (u ∈ G)

for each v ∈ G, where for any vectors u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn)

∈ G we define

u · v =
n∑

i=1

uivi (mod 2).

Lemma 1.14. For all u, v, g, h ∈ G,

1. fu+v(g) = fu(g)fv(g); and

2. fv(g + h) = fv(g)fv(h).

Proof. Both of these results are immediate consequences of the definitions:

fu+v(g) = (−1)(u+v)·g = (−1)u·g(−1)v·g = fu(g)fv(g)

and

fv(g + h) = (−1)v·(g+h) = (−1)v·g(−1)v·h = fv(g)fv(h)

as required.
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Thus the conditions of lemma 1.6 are satisfied. In this context, defini-

tion 1.8 becomes:

Definition 1.15. The Walsh-Hadamard transform D : V → V is given by

D(f)(g) =
∑

h∈G

f(h)(−1)g·h for all g ∈ G, f ∈ V .

By lemma 1.10,

D−1(f)(g) = 2−n
∑

h∈G

f(h)(−1)g·h for all g ∈ G, f ∈ V .

Notice that if f is real-valued, then so is D(f), and vice versa.

1.3.3.2 Properties of the Walsh-Hadamard Transform

The following result summarises some important properties of the Walsh-

Hadamard transform.

Theorem 1.16. For elements f, g ∈ V ,

1. 〈f, g〉 = 2−n〈D(f), D(g)〉; in particular, ‖f‖2 = 2−n ‖D(f)‖2

2. D(f ⊗ g) = D(f)D(g)

3. D(fg) = 2−nD(f)⊗D(g)

4. D(D(f)) = 2nf

Proof. Parts 1, 2 and 3 are immediate consequences of theorem 1.12. Part 4

follows from the equations for the Walsh-Hadamard transform and its inverse.
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1.3.3.3 Computation of the Walsh-Hadamard Transform

For n ≥ 1, we have a natural isomorphism G ' G′ × C2, where G′ denotes

the elementary abelian group of order 2n−1, so that any element u ∈ G can

be written u = (u′, un) for an (n − 1)-bit vector u′ ∈ G′ and a bit un ∈ C2.

This observation allows us to compute the Walsh-Hadamard transform of a

function f ∈ V inductively: for u = (u′, un) ∈ G,

D(f)(u) =
∑
v∈G

(−1)u·vf(v)

=
∑

(v′,vn)∈G

(−1)u′·v′+unvnf(v′, vn)

=
∑

v′∈G′
(−1)u′·v′f(v′, 0) +

∑

v′∈G′
(−1)u′·v′+unf(v′, 1)

= D′(f0)(u
′) + (−1)unD′(f1)(u

′) (1.17)

where D′ denotes the DFT on G′ defined for any f ′ : G′ → C by

D′(f ′)(u′) :=
∑

v′∈G′
(−1)u′·v′f(v′)

and fi : G′ → C is defined by

fi(u
′) := f(u′, i) for all u′ ∈ G′.

Thus we can compute the Walsh-Hadamard transform of a function on the

elementary abelian 2-group of order 2n in terms of the Walsh-Hadamard

transform of two functions on the elementary abelian 2-group of order 2n−1.

In fact, the number of additions/subtractions required for this computa-

tion is n2n. To prove this by induction, it suffices to note that it is clearly

true for n = 1, and if the number for the elementary abelian 2-group of order

2n−1 is (n − 1)2n−1, then the number for the group of order 2n is seen from

equation (1.17) to be 2(n− 1)2n−1 + 2n = n2n.
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1.3.3.4 The “Pile-up” Lemma

Here we present a result often referred to as the “Pile-up” Lemma, which we

will use later in this chapter. In fact, it can be seen to be a consequence of the

DFT, but that discussion is deferred to section 4.1.1. An elegant elementary

proof can be found in [6].

Definition 1.18. For a distribution X on {0, 1}, define

c(X) := Pr(X = 0)− Pr(X = 1).

Lemma 1.19 (Pile-up Lemma). If X1, . . . Xm are m independent distri-

butions on {0, 1}, then

c(X1 ⊕ · · · ⊕Xm) = c(X1) . . . c(Xm)

1.3.4 The DFT on a Finite Group

In this section we present some principal results from classical group rep-

resentation theory. These results are almost all taken from [4], to which a

reader seeking proofs or other details is referred.

1.3.4.1 Survey of Principal Results

Definition 1.20. An algebra A over a field F is a set which forms both a ring

and a vector space over F such that the additive group structure in each case

is the same, and ring multiplication commutes with scalar multiplication, i.e.

λ(ab) = (λa)b = a(λb) for all a, b ∈ A, λ ∈ F.

An algebra homomorphism φ : A → B is a vector space homomorphism for

which

φ(ab) = φ(a)φ(b) for all a, b ∈ A, and

φ(1A) = 1B.
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Lemma 1.21. The set of maps G→ C forms an algebra CG over C with

multiplication given by convolution:

(ab)(g) =
∑

g1,g2:g1g2=g

a(g1)a(g2).

Definition 1.22. CG is the group algebra of G over C.

Definition 1.23. A representation of CG of dimension d is an algebra homo-

morphism CG → End(Cd), the algebra of linear transformations Cd → Cd.

Theorem 1.24 (Wedderburn). The group algebra CG of a finite group G

is isomorphic to an algebra of block diagonal matrices:

CG '
h⊕

j=1

Cdj×dj , (1.25)

where h is the number of conjugacy classes in G and the dj are determined

up to permutation by G.

Definition 1.26. An isomorphism D : CG → ⊕h
j=1Cdj×dj is a discrete

Fourier transform (DFT) for G.

Notation 1.27. Given such an isomorphism, we write Dj for the induced C

algebra surjection CG → Cdj×dj .

Theorem 1.28. The group homomorphisms G → C form a group isomor-

phic to G/G′, where G′ denotes the commutator subgroup 〈g−1h−1gh : g, h ∈
G〉.

Definition 1.29. A character χ : CG → C is a map derived from a repre-

sentation D of CG by setting χ(g) := Tr(D(g)) for g ∈ G, and extending its

definition to CG linearly; here Tr denotes the trace of a square matrix, that is,

the sum of its diagonal entries. We write χi for the character corresponding

to the representation Di.
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Definition 1.30. The inner product 〈χ, χ′〉 of two characters χ and χ′ is

∑
g∈G

χ(g)χ′(g).

Theorem 1.31. The characters χi are pairwise orthogonal; that is, for i 6= j,

〈χi, χj〉 = 0.

Remark 1.32. We have now gathered enough group-theoretic machinery to

derive the result cited at the beginning of section 1.3.2.1. Suppose that G is

abelian, so that h = |G|. Since the vector space dimensions of both sides of

equation (1.25) are equal, we have the equality

|G| =
|G|∑
j=1

d2
j

from which it follows that dj = 1 for 1 ≤ j ≤ |G|. Thus each Di is an algebra

homomorphism CG → C, so equals its corresponding character χi. The

characters χi are pairwise orthogonal, and therefore, considered as functions

G → C, are distinct, and group homomorphisms, so by theorem 1.28 form

a group isomorphic to G/G′ ' G. Thus we can label them χg for g ∈ G in

such a way that

χgh = χgχh for all g, h ∈ G.

The set {χg : G → C}g∈G is thus seen to be an orthogonal set with the

properties cited in section 1.3.2.1.

A DFT D : CG → ⊕h
j=1Cdj×dj determines a |G|×|G|matrix D according

to the rule

D(j,k,l),g := Dj(g)k,l for g ∈ G, 1 ≤ j ≤ h, 1 ≤ k,l ≤ dj.

Up to permutations of the rows and columns, D is uniquely determined by

D.
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Proposition 1.33. The cyclic group of order n has a DFT matrix DFTn

with entries (DFTn)ij = ω(i−1)(j−1) (1 ≤ i, j ≤ n), for any fixed primitive nth

root ω of unity.

In fact, we have already seen this from example 1.7 and the work of

section 1.3.2.

Definition 1.34. The Kronecker product A ⊗ B of square matrices A and

B is given by

A⊗B :=




A11B A12B · · ·
A21B A22B · · ·
...

...
. . .


 ,

where Aij denotes the entry of A in the ith row and jth column.

Theorem 1.35. If A is a DFT matrix for a group G and B is a DFT matrix

for a group H, then A⊗B is a DFT matrix for the direct product G×H.

Corollary 1.36. The direct product Vn of n copies of the cyclic group of

order 2 has a 2n × 2n DFT matrix with (i + 1, j + 1)th entry (−1)i·j, where

for integers i =
∑n−1

k=0 2kik and j =
∑n−1

k=0 2kjk we denote by i · j the quantity

i · j :=
n−1∑

k=0

ikjk (mod 2).

Proof. Let T =


 1 1

1 −1


, a DFT matrix for the cyclic group of order 2

by proposition 1.33. By theorem 1.35, T n = T ⊗ · · · ⊗ T (n terms) is a DFT

matrix for Vn. We prove by induction on n that the (i+1, j +1)th entry T
(n)
ij

of T n is (−1)i·j.

The result certainly holds for n = 1, so suppose n > 1 and the result

is true for n − 1. By definition of the Kronecker product, for indices i =
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2n−1in−1 + i′ (0 ≤ i′ < 2n−1) and j = 2n−1jn−1 + j′ (0 ≤ j′ < 2n−1), the

(i + 1, j + 1)th entry of T n is the (i + 1, j + 1)th entry of T n−1 iff1 either in−1

or jn−1 is 0, otherwise the (i + 1, j + 1)th entry of T n is the (−1) times the

(i + 1, j + 1)th entry of T n−1. Thus

T
(n)
ij = (−1)in−1jn−1T

(n−1)
i′j′

= (−1)in−1jn−1(−1)i′·j′ by the inductive hypothesis

= (−1)i·j.

Thus the result is true for n.

Hence, by induction, the result is true for all n ≥ 1.

Theorem 1.37. With the same notation Di and di as above, we have the

following:

1. (Fourier inversion formula) For a ∈ CG,

a(g) =
1

|G|
h∑

i=1

di Tr(Di(g
−1)Di(a)).

2. (Plancherel formula) For two elements a, b ∈ CG,

∑
g∈G

a(g)b(g) =
1

|G|
h∑

i=1

di Tr(Di(ã)Di(b)),

where ã ∈ CG is defined by the rule ã(g) = a(g−1) (g ∈ G).

Finally, we present a result from [4] about computing a DFT for finite

groups.

Definition 1.38. A chief sequence for a finite group G is a sequence of

normal subgroups G1, . . . , Gr such that

G = Gr B Gr−1 B · · · B G1 = 〈1〉
1Here, and subsequently in this thesis, we use the abbreviation ‘iff’ for ‘if and only if’.
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and there is no normal subgroup N of G such that Gi B N B Gi−1 for any

i (2 ≤ i ≤ r). A finite group G is supersolvable iff it has a chief sequence

G1, . . . , Gr for which each Gi/Gi−1 (2 ≤ i ≤ r) is cyclic of prime order.

Definition 1.39. Let x1, . . . , xn be indeterminates over C. Then a sequence

(g1, . . . gn+r) of linear forms gi ∈ Cx1 + · · ·+ Cxn (1 ≤ i ≤ n + r) is a linear

computation sequence of length r iff g1 = x1, . . . , gn = xn and whenever

n < k ≤ n + r either

1. gk = zkgi for some zk ∈ C and index i satisfying 1 ≤ i < k; or

2. gk = εkgi + δkgj for εk, δk ∈ {1,−1} and indices i, j satisfying 1≤ i, j <

k.

Definition 1.40. For an m× n matrix A = (Aij) with entries in C, L∞(A)

is the minimal integer r for which there is a linear computation sequence of

length r computing all the forms
∑n

j=1 Aijxj (i = 1, . . . m).

Theorem 1.41. If G is supersolvable and D is any DFT matrix for G,

L∞(D) ≤ 8.5 |G| log2 |G|.

Moreover, a construction is given in [4] to construct a DFT from a

power-commutator presentation of G and chief sequence for G in at most

14|G| log2 |G|+ 5 |G| “basic operations”.

Finally, on this topic, we have the following result relating the complexity

of computing a DFT matrix and its inverse.

Theorem 1.42. For any DFT matrix D on a finite group G,

∣∣L∞(D)− L∞(D−1)
∣∣ ≤ |G| .
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1.4 Information Theoretic Preliminaries

In this section we present some basic ideas in information theory, which will

be used in subsequent chapters. In section 1.4.1 we follow ideas of Rényi

to define directed divergence of general order α ≥ 1, and explore some of

its properties. Then in section 1.4.2 we define Rényi information and mu-

tual information in terms of directed divergence, and derive some further

results. Finally, in section 1.4.3, we consider the particular case of Bernouilli

distributions, which will be of particular importance in chapter 2.

1.4.1 Directed Divergence

Definition 1.43. The directed divergence of order α, for any real α ≥ 1,

between two probability distributions X and Y on a set S is

dα(X; Y ) :=





1
α−1

((∑
s∈S PrY (s)

(
PrX(s)
PrY (s)

)α)
− 1

)
if α > 1

∑
s∈S PrX(s) ln PrX(s)

PrY (s)
if α = 1.

To interpret these equations correctly, we need to give a couple of points of

guidance: first, the sums
∑

s∈S are over elements s ∈ S for which PrY (s) > 0;

second, whenever PrX(s) = 0 then the term PrX(s) ln PrX(s)
PrY (s)

is taken to be 0.

Although it is not immediately apparent, if we fix any X and Y , dα(X; Y )

is a continuous function of α on [1,∞). To establish this it is sufficient to

show that whenever PrX(s) and PrY (s) are both non-zero

1

α− 1

((∑
s∈S

PrY (s)

(
PrX(s)

PrY (s)

)α
)
− 1

)
→

∑
s∈S

PrX(s) ln
PrX(s)

PrY (s)
as α ↓ 1.

Since the L.H.S. of this can be re-expressed

1

α− 1

((∑
s∈S

PrY (s)

(
PrX(s)

PrY (s)

)α
)
− 1

)

=
∑
s∈S

(
PrY (s)

1

α− 1

((
PrX(s)

PrY (s)

)α

− PrX(s)

PrY (s)

))
,

30



we see that the result is an immediate corollary of the following lemma.

Lemma 1.44. For any real a > 0,

lim
α→1

1

α− 1
(aα − a) = a ln a.

Proof. Write f(α) = aα. f is differentiable on (−∞,∞) with derivative

f ′(α) = aα ln a. In particular, f is differentiable at α = 1, so

lim
α→1

1

α− 1
(f(α)− f(1)) = f ′(1)

i.e. lim
α→1

1

α− 1
(aα − a) = a ln a

An important property of directed divergence is given in the following

proposition.

Proposition 1.45. For any α ≥ 1, dα(X; Y ) ≥ 0 with equality if and only

if PrX(s) = PrY (s) for each s ∈ S such that PrY (s) > 0.

Proof. First of all, we show that f(x) := x ln x and g(x) := xα (for α > 1)

are convex on (0,∞) by computing their second derivatives and observing

that they are strictly positive on that interval:

f ′(x) = 1 + ln x

f ′′(x) = 1/x > 0 for x > 0

and, for α > 1,

g′′(x) = α(α− 1)xα−2 > 0 for x > 0.

Now we use the fact that if h(x) is any convex function on (0,∞), xi

(i = 1, . . . , n) are reals in the interval (0,∞) and pi (i = 1, . . . , n) are reals

in the range (0, 1] whose sum is 1, then

n∑
i=1

pih(xi) ≥ h(
n∑

i=1

pixi)
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with equality iff all xi are equal.

Applying this first to f ,

d1(X; Y ) =
∑
s∈S

PrX(s) ln
PrX(s)

PrY (s)

=
∑
s∈S

PrY (s)f

(
PrX(s)

PrY (s)

)

≥ f(1)

= 0,

with equality iff PrX(s) = PrY (s) whenever PrY (s) > 0.

Similarly, when α > 1 we can apply it to g:

dα(X; Y ) =
1

α− 1

((∑
s∈S

PrY (s)

(
PrX(s)

PrY (s)

)α
)
− 1

)

=
1

α− 1

((∑
s∈S

PrY (s)g

(
PrX(s)

PrY (s)

))
− 1

)

≥ 1

α− 1
(g(1)− 1)

= 0,

again with equality iff PrX(s) = PrY (s) whenever PrY (s) > 0.

Finally in this section we prove a result about directed divergence which

will be of use to us in the next section.

Proposition 1.46. With notation as above,

dα(X; Y ) ≥ dα(h(X); h(Y )) for any α ≥ 1,

where h : S → S ′ (for any set S ′) is any function, and the corresponding

induced distribution h(X) on S ′ is given by

Prh(X)(s
′) :=

∑
s∈S:

h(s)=s′

PrX(s) for each s′ ∈ S ′,
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and similarly for h(Y ).

Proof. As in the proof of proposition 1.45, define f(x) := x ln x and g(x) :=

xα (for α > 1) for x ∈ (0,∞). For α = 1 we have

d1(X; Y ) =
∑
s∈S

PrX(s) ln
PrX(s)

PrY (s)

=
∑
s∈S

PrY (s)f

(
PrX(s)

PrY (s)

)

=
∑

s′∈S′
Prh(Y )(s

′)
∑
s∈S:

h(s)=s′

PrY (s)

Prh(Y )(s′)
f

(
PrX(s)

PrY (s)

)

≥
∑

s′∈S′
Prh(Y )(s

′)f




∑
s∈S:

h(s)=s′

PrY (s)

Prh(Y )(s′)
PrX(s)

PrY (s)


 by convexity

=
∑

s′∈S′
Prh(Y )(s

′)f
(

Prh(X)(s
′)

Prh(Y )(s′)

)

= d1(h(X); h(Y )).

As usual the sums here are over s ∈ S for which PrY (s) > 0 and s′ ∈ S ′

for which Prh(Y )(s
′) > 0; note that if PrY (s) > 0 then Prh(Y )(s

′) > 0 for

s′ = h(s).

For α > 1, a similar argument applies:

dα(X; Y )

=
1

α− 1

((∑
s∈S

PrY (s)

(
PrX(s)

PrY (s)

)α
)
− 1

)

=
1

α− 1

((∑
s∈S

PrY (s)g

(
PrX(s)

PrY (s)

))
− 1

)
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=
1

α− 1







∑

s′∈S′
Prh(Y )(s

′)
∑
s∈S:

h(s)=s′

PrY (s)

Prh(Y )(s′)
g

(
PrX(s)

PrY (s)

)

− 1




≥ 1

α− 1







∑

s′∈S′
Prh(Y )(s

′)g




∑
s∈S:

h(s)=s′

PrY (s)

Prh(Y )(s′)
PrX(s)

PrY (s)





− 1




by convexity

=
1

α− 1

((∑

s′∈S′
Prh(Y )(s

′)g
(

Prh(X)(s)

Prh(Y )(s′)

))
− 1

)

= dα(h(X); h(Y )).

Note that a proof for the case α = 1 could alternatively be derived from

a proof for the case α > 1 by a continuity argument.

1.4.2 Information and Mutual Information

Definition 1.47. For any real α ≥ 1, the information Iα(X) of order α of

(or in) a distribution X on a set S is dα(X; U), where U denotes the uniform

distribution on S. When α = 1, we also refer to Iα(X) as the Shannon

information of (or in) X.

An immediate consequence of proposition 1.45 is:

Lemma 1.48. For any real α ≥ 1, Iα(X) ≥ 0 with equality iff X = U .

Definition 1.49. Let (X,Y ) denote a probability distribution on the Carte-

sian product S × T of two sets S and T . From (X,Y ) we can form new
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distributions X on S, Y on T and X, Y on S × T by defining

PrX(s) =
∑
t∈T

Pr(X,Y )(s, t),

PrY (t) =
∑
s∈S

Pr(X,Y )(s, t) and

PrX,Y (s, t) = PrX(s) PrY (t).

The mutual information Iα(X; Y ) of order α between X and Y is defined to

be dα((X, Y ); X, Y ), for any real α ≥ 1. If α = 1 we also refer to Iα(X; Y )

as the Shannon mutual information between X and Y .

Having made these definitions, the following result follows readily:

Lemma 1.50. For any real α ≥ 1, Iα(X; Y ) ≥ 0 with equality if and only if

X and Y are independent.

Proof. From lemma 1.48, Iα(X; Y ) ≥ 0 with equality if and only if

Pr(X,Y )(s, t) = PrX(s) PrY (t)

whenever PrX(s) PrY (t) > 0. Note though that if PrX(s) PrY (t) = 0, either

PrX(s) = 0 or PrY (t) = 0, so that, either way, Pr(X,Y )(s, t) = 0. Hence

Iα(X; Y ) = 0 if and only if

Pr(X,Y )(s, t) = PrX(s) PrY (t)

for all s ∈ S, t ∈ T ; this is, if and only if X and Y are independent.

Note also that it follows immediately from the definitions that, for all

distributions X and Y , Iα(X; Y ) = Iα(Y ; X).

Definition 1.51. Retaining the same notation, the conditional information

Iα(X|Y ) of order α between X and Y is defined by the expression

Iα(X|Y ) :=
∑
t∈T

PrY (t)Iα(X|Y = t)

35



where Iα(X|Y = t) is the information in the distribution X|(Y = t) on S

defined by

PrX|Y =t(s) := Pr(X = s|Y = t) = Pr(X,Y )(s, t)/ PrY (t).

For Shannon information, if we interpret I1(X; Y ) as the amount of in-

formation knowledge of Y reveals about X, then it seems apt that I1(X; Y )

should equal the information in X when Y is known minus the information

in X before Y is known. This is borne out by the following lemma.

Lemma 1.52. I1(X; Y ) = I1(X|Y )− I1(X).

Proof. Let US denote the uniform distribution on S. Now we calculate

I1(X; Y )

=
∑
s∈S
t∈T

Pr(X,Y )(s, t) ln
Pr(X,Y )(s, t)

PrX(s) PrY (t)

=
∑
s∈S
t∈T

Pr(X,Y )(s, t) ln
Pr(X,Y )(s, t)

PrUS
(s) PrY (t)

−
∑
s∈S
t∈T

Pr(X,Y )(s, t) ln
PrX(s)

PrUS
(s)

=
∑
t∈T

PrY (t)
∑
s∈S

Pr(X,Y )(s, t)

PrY (t)
ln

Pr(X,Y )(s, t)

PrUS
(s) PrY (t)

−
∑
s∈S

PrX(s) ln
PrX(s)

PrUS
(s)

=
∑
t∈T

PrY (t)
∑
s∈S

Pr(s|t) ln
Pr(s|t)
PrUS

(s)
− I1(X)

= I1(X|Y )− I1(X),

as required.

It is also intuitive that the mutual information Iα(X; Y ) which X reveals

about Y should be at least as great as the information Iα(f(X); Y ), where

f(X) denotes the distribution induced on S ′ by a function f : S → S ′:

Prf(X)(s
′) =

∑
s∈S:

f(s)=s′

PrX(s) for each s′ ∈ S ′.
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Proposition 1.53. With notation as above,

Iα(f(X); Y ) ≤ Iα(X; Y ).

Proof. By definition

Iα(X; Y ) = dα((X, Y ); X, Y ),

and

Iα(f(X); Y ) = dα((f̃((X, Y )); f̃(X,Y )),

where we define the map f̃ : S × T → S × T by the rule

f̃(s, t) = (f(s), t).

The result now follows immediately from proposition 1.46.

1.4.3 Information in Bernoulli Distributions

In chapter 2 it will prove convenient to have made the following definition.

Definition 1.54. For the specific case S = {0, 1}, we define, for each α ≥ 1,

a function on [−1, 1] by the rule

iα(q − p) := Iα(Xp),

where Xp is the distribution on S taking the values 0 and 1 with respective

probabilities p and q := 1− p.

Hence, more explicitly,

iα(x) =





1
α−1

(1
2
((1 + x)α + (1− x)α)− 1) for α > 1

1+x
2

ln(1 + x) + 1−x
2

ln(1− x) for α = 1.

As above, we interpret the term 1+x
2

ln(1+x) as having value 0 when x = −1.
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Lemma 1.55. For any real α ≥ 1, iα(x) is convex and iα(x) = iα(−x) on

[−1, 1].

Proof. Certainly iα(x) = iα(−x) for all x ∈ [−1, 1].

To show that iα(x) is convex it is necessary and sufficient to show that

the second derivative i′′α(x) > 0 on (−1, 1). We compute the first and second

derivatives of iα(x) with respect to x:

i′α(x) =





α
2(α−1)

((1 + x)α−1 − (1− x)α−1) for α > 1

1
2
ln(1 + x)− 1

2
ln(1− x) for α = 1

and

i′′α(x) =
α

2

(
(1 + x)α−2 + (1− x)α−2

)
for all α ≥ 1;

the result follows immediately from this expression.

1.5 Some Theory Of Ciphers

It is generally acknowledged that the birth of the formal mathematical study

of cipher systems is marked by the seminal paper of Shannon [11]. There he

makes the following definition:

Definition 1.56 (Shannon). A secrecy system is a family of uniquely re-

versible transformations Ti of a set of possible messages into a set of cryp-

tograms, the transformation Ti having an associated probability pi.

Each index i is also called a key. It is understood that the number of

indices i, or keys, is finite. Likewise, the set of possible messages is finite. It

is assumed that an enemy, i.e. anyone attempting to derive information about

message from observations of cryptograms, knows the set of transformations

{Ti} and the probability pi associated with each key i.
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We also use the word cipher to mean a secrecy system defined in this

way.

An originating party uses the system by choosing a key i according to the

distribution defined by the pi, and communicating it over a secure channel

to his intended recipient. Subsequently when he wishes to send a message

over a channel on which an enemy may be eavesdropping, he can apply Ti to

his message, often called the plaintext, and transmit the resulting ciphertext

over the insecure channel.

1.5.1 Stream Ciphers

In this section we define a particular type of cipher known as a stream cipher.

Definition 1.57. A stream cipher is a cipher system in which, for some

integer N ≥ 1, the messages are N -bit sequences and each encrypting trans-

formation Ti is of the form

m1m2 . . . mN 7→ c1c2 . . . cN

where

b1b2 . . . bN

is an N -bit keystream sequence determined by the key i, and each ciphertext

bit is obtained from corresponding plaintext and keystream bits according to

the rule

cj = mj ⊕ bj (j = 1, . . . , N),

where ⊕ denotes modulo 2 addition, or exclusive-or.

Stream ciphers find favour in certain practical situations because they

are not error-propagating, in the sense that each message bit mj a recipient

recovers using T−1
i from c1c2 . . . cN is in error due to channel corruptions iff

the corresponding cj is likewise in error.

39



1.5.2 Implementing Stream Ciphers

In section 1.5.1 we saw that an essential component of a stream cipher is a

rule to derive from a key value i an associated keystream sequence

b1b2 . . . bN

A construction used frequently in practice to achieve this is as follows.

Definition 1.58. Let V be the set of n-bit vectors, for some fixed n. A

keystream generator is a finite state machine with state space V , a state

transition function T : V → V , and an output function f : V → {0, 1}. The

initial state x of the keystream generator is either the key i or some fixed

function of i. The keystream sequence

b1b2 . . . bN

produced from i is the corresponding output sequence from the finite state

machine:

bi = f(T ix) (i = 1, . . . , N).

For any good stream cipher constructed from a keystream generator the

output function f will be, approximately, balanced — that is, it takes the

values 0 and 1 (approximately) equally often.

1.5.3 Known Plaintext Attacks on Stream Ciphers

An enemy attacking a stream cipher will usually have some knowledge of the

plaintext for which he has observed corresponding ciphertext, typically in

the form of a probability distribution on the possible values of the plaintext.

As a worst case assumption, from the point of view of the communicating

parties, we presume that the enemy has complete knowledge of plaintext as
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well as ciphertext: thus we say that his attack is a known plaintext attack.

In consequence, he knows the keystream sequence

b1b2 . . . bN .

This knowledge may, or may not, depending on the nature of the stream

cipher, allow the corresponding key to be calculated (of course, this will not

be possible for a good stream cipher).

In a practical situation, knowledge of the key for a particular message may

of much greater use to an enemy than knowledge of a particular keystream

sequence b1b2 . . . bN . For example, a system may encrypt each individual

message by initialising a keystream generator with a simple function of a

key and message-specific value. In this case a known plaintext attack on

any one message may allow an enemy to determine the initial state of the

keystream generator when encrypting that message, and hence to deduce the

initial keystream generator state — and hence keystream — used to encrypt

other messages. Notice also, that if an enemy can determine the keystream

generator state corresponding to the start of a segment of keystream, he can

recompute the entire keystream sequence.

1.5.4 Gallager’s Decoding Algorithm

Finally in this section, we present an algorithm due to Gallager [6] which

is effective in decoding certain binary block codes. Our interest in it stems

from applications in the cryptanalysis of certain stream ciphers, such as those

attacks described in [3]. We will consider an attack based on this algorithm in

section 3.8, but here we concentrate on presenting the theory of the decoding

algorithm, as presented in [6] and [3].

Suppose that a source generates a sequence x1, . . . , xN of bits uniformly,
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subject to m relations
⊕

j∈Jk
xj = 0 (1 ≤ k ≤ m), where each Jk ⊆

{1, . . . , N} and |Jk| ≥ 2. The sequence (xi)
N
i=1 is transmitted over a bi-

nary symmetric channel — that is, each bit is corrupted with probability p

independently of each other bit — and is received as a sequence y1, . . . , yN .

In this section we denote by Prsource a probability taken over sequences

(xi)
N
i=1, each with associated probability that with which it is generated by

the source, and denote simply by Pr a probability taken over sequences (xi)
N
i=1

with the uniform distribution (i.e. each sequence with probability 2−N). Let

pi denote the probability Pr(xi = 0|(yj)
N
j=1) (1 ≤ i ≤ N), so that

pi =





1− p if yi = 0

p if yi = 1.

For any index d (1 ≤ d ≤ N), we can compute

Pr
source

(xd = 0|(yi)
N
i=1)

= Pr(xd = 0|(yi)
N
i=1 and relations Jk (1 ≤ k ≤ m) hold)

=
Pr(relations Jk (1 ≤ k ≤ m) hold|xd = 0, (yi)

N
i=1) Pr(xd = 0|(yi)

N
i=1)

Pr(relations Jk (1 ≤ k ≤ m) hold|(yi)N
i=1)

(1.59)

by the definition of conditional probabilities. Now

Pr(relations Jk (1 ≤ k ≤ m) hold|xd = 0, (yi)
N
i=1)

=
m∏

k=1

Pr(relation Jk holds|xd = 0, (yi)
N
i=1) if the Jk\{d} are disjoint

=
m∏

k=1
d∈Jk


1

2


1 +

∏

j∈Jk\{d}
(2pj − 1)







m∏

k=1
d/∈Jk

(
1

2

(
1 +

∏
j∈Jk

(2pj − 1)

))

(1.60)

42



if the probabilities Pr(xi = 0|(yj)
N
j=1) for 1 ≤ i ≤ N are independent, so that

we can use lemma 1.19. In fact this is generally not true, but Gallager argues

that equation (1.60) is nonetheless a good approximation.

Thus, with these assumptions, we have, by (1.59),

Pr
source

(xd = 0|(yi)
N
i=1)

=

pd

m∏
k=1
d∈Jk

(
1
2

(
1 +

∏
j∈Jk\{d}

(2pj − 1)

))
m∏

k=1
d/∈Jk

(
1
2

(
1 +

∏
j∈Jk

(2pj − 1)

))

Pr(relations Jk (1 ≤ k ≤ m) hold|(yi)N
i=1)

(1.61)

Similarly

Pr
source

(xd = 1|(yi)
N
i=1)

=

(1− pd)
m∏

k=1
d∈Jk

(
1
2

(
1− ∏

j∈Jk\{d}
(2pj − 1)

))
m∏

k=1
d/∈Jk

(
1
2

(
1 +

∏
j∈Jk

(2pj − 1)

))

Pr(relations Jk (1 ≤ k ≤ m) hold|(yi)N
i=1)

(1.62)

Hence from (1.61) and (1.62)

Prsource(xd = 0|(yi)
N
i=1)

Prsource(xd = 1|(yi)N
i=1)

=
pd

1− pd

m∏

k=1
d∈Jk

1 +
∏

j∈Jk\{d}(2pj − 1)

1−∏
j∈Jk\{d}(2pj − 1)

These calculations motivate the decoding algorithm due to Gallager [6]:

1. For 1 ≤ i ≤ N , set

pi :=





1− p if yi = 0

p if yi = 1

2. Given the sequence of probabilities (pi)
N
i=1, generate a new sequence of

probabilities (p′i)
N
i=1 according to the equations

p′i
1− p′i

=
pi

1− pi

m∏

k=1
i∈Jk

1 +
∏

j∈Jk\{i}(2pj − 1)

1−∏
j∈Jk\{i}(2pj − 1)

(1 ≤ i ≤ N) (1.63)
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3. Set pi := p′i (1 ≤ i ≤ N).

4. If the sequence (pi)
N
i=1 has not converged, goto 2.

5. Recover a codeword x′1, . . . , x
′
N by setting

x′i :=





0 if pi ≥ 1
2

1 if pi < 1
2

In fact, Gallager suggests that the contribution to p′i due to a relation Jk

should be computed using probability estimates pi which did not make use

of the relation Jk when they themselves were last re-estimated. If we denote

by pi,k an estimate for Pr(xi = 0|(yi)
N
i=1) which didn’t make use of relation

Jk in the previous round, we obtain the following version of the algorithm:

1. For 1 ≤ i, l ≤ N , set

pi,l :=





1− p if yi = 0

p if yi = 1

2. Given the sequences of probabilities (pi,l)
N
i=1 (1 ≤ l ≤ N), generate

new sequences of probabilities (p′i,l)
N
i=1 (1 ≤ l ≤ N) according to the

equations

p′i,l
1− p′i,l

=
pi,l

1− pi,l

m∏

k=1
i∈Jk,k 6=l

1 +
∏

j∈Jk\{i}(2pj,k − 1)

1−∏
j∈Jk\{i}(2pj,k − 1)

(1 ≤ i ≤ N)

3. Set pi,l := p′i,l for 1 ≤ i, l ≤ N .

4. If not all the sequences (pi,l)
N
i=1 have converged, goto 2.

5. Recover a codeword x′1, . . . , x
′
N by setting

x′i :=





0 if pi,1 ≥ 1
2

1 if pi,1 < 1
2
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Gallager also notes that the calculations (1.63) can be simplified by using

log-likelihood ratios; if we write

L(x) := ln
x

1− x
(−1 < x < 1)

and

s(x) :=





1 if x ≥ 0

−1 if x < 0

then, after some calculations, we can re-express (1.63) as

L(p′i) = L(pi) +
m∑

k=1
i∈Jk






 ∏

j∈Jk\{i}
s(L(pj))


 f


 ∑

j∈Jk\{i}
f(|L(pj)|)






 ,

where

f(β) := ln
eβ + 1

eβ − 1

Canteaut and Trabbia [3] cite an approximation from [7], which in this con-

text becomes

L(p′i) ≈ L(pi) +
m∑

k=1
i∈Jk






 ∏

j∈Jk\{i}
s(L(pj))


 min

j∈Jk\{i}
|L(pj)|





This leads to the following reformulation of the basic Gallager algorithm:

1. For 1 ≤ i ≤ N , set

Li :=





L(p) if yi = 0

−L(p) if yi = 1

2. For 1 ≤ i ≤ N , set

L′i := Li +
m∑

k=1
i∈Jk


 ∏

j∈Jk\{i}
s(Lj)


 min

j∈Jk\{i}
|Lj|

3. Set Li := L′i (1 ≤ i ≤ N).
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4. If the sequence (Li)
N
i=1 has not converged, goto 2.

5. Recover a codeword x′1, . . . , x
′
N by setting

x′i :=





0 if Li ≥ 0

1 if Li < 0

Canteaut and Trabbia consider the particular case where

• each Jk has cardinality s;

• the relations Jk satisfy the shift property

Jk is a relation, l ∈ Z and Jk + l ⊆ {1, . . . N} ⇒ Jk + l is a relation.

In these circumstances, the authors claim, on the basis of experimental evi-

dence, that the condition for the reformulated algorithm to converge to the

correct solution is approximately

m(s) ≥ Ks/i1((1− 2p)s−2),

where

m(s) = |{k : 1 ≤ k ≤ N and 1 ∈ Jk}|

and

K3 ≈ 2, Ks ≈ 1 for s ≥ 4.
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Chapter 2

A Problem in Information

Theory

2.1 Introduction

In this chapter we take as our starting point a problem in communication

theory, which we present in section 2.2. This, as we show in section 2.3,

can be reformulated in terms of the information function Iα introduced in

section 1.4.2 to produce a result we conjecture to be true, at least for some

values of α. We show how the DFT provides a simple and natural proof

of this conjecture for α = 2, from which we are able to solve our original

problem. We then work towards a proof of the conjecture, or a generalised

form of it, for Shannon information (α = 1), deriving, on the way, a number

of results of interest in their own right concerning the DFT and information

theoretic functions. Unfortunately, despite strenuous efforts, the truth of

these conjectures for α = 1 remains undetermined. Finally, we prove that

neither the conjecture nor the generalised conjecture holds for all α ≥ 1.
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2.2 The Problem

Suppose that an originator generates an n-bit vector V 1 according to the

uniform probability distribution on such vectors, and sends the n bits of

V over a channel to a receiver, who receives the n bits as a vector W. We

suppose that the channel is binary symmetric, so that each bit of W is the

corresponding bit of V corrupted with error probability p ≤ 1
2

independently

of any corruptions in other positions. We ask the following question: is it

possible for the originator and receiver to agree on choices for balanced n-bit

to 1-bit functions f and g prior to the generation of V in such a way that

f(V ) and g(W ) agree with probability greater than 1 − p? Note that by a

balanced function we mean one that assumes the values 0 and 1 for equally

many arguments.

2.3 Information-Theoretic Reformulation

For any real α ≥ 1, we can re-express the problem of section 2.2 by asking

whether or not

Iα(f(V )⊕ g(W )) ≤ iα(q − p)

for all balanced f and g, where we have written q := 1 − p. We can prove

the following result:

Proposition 2.1. Fix any real α ≥ 1. Then with the notation of section 2.2,

f(V ) and g(W ) agree with probability ≤ 1 − p for all choices of balanced

functions f and g if and only if

Iα(f(V )⊕ g(W )) ≤ iα(q − p) (2.2)

1Throughout this chapter V will represent an n-bit vector as described here, and not

a map G → C as in the previous chapter.
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for all balanced f and g.

Proof. Write r := Pr(f(V ) = g(W )), and s := 1− r. Then

Iα(f(V )⊕ g(W )) = iα(r − s)

and

Iα(f(V )⊕ g(W )) ≤ iα(q − p)

⇔ iα(r − s) ≤ iα(q − p)

⇔ |r − s| ≤ q − p,

since, by lemma 1.55, iα(x) is convex and iα(x) = iα(−x) for all x ∈ [−1, 1].

But

|r − s| ≤ q − p

⇔ 2r − 1 ≤ 2q − 1 and 1− 2r ≤ 1− 2p

⇔ p ≤ r ≤ 1− p.

So if (2.2) holds, f(V ) and g(W ) agree with probability ≤ 1−p. And if f(V )

and g(W ) agree with probability ≤ 1−p for all balanced f and g, then, noting

that f is balanced if and only if its pointwise complement 1− f is balanced,

so also f(V ) and g(W ) agree with probability ≥ p for all balanced f and g,

so equation (2.2) also holds for all balanced f and g.

However, we also have the following result.

Lemma 2.3. If X and Y are balanced Bernouilli random variables, then,

for any real α ≥ 1, Iα(X ⊕ Y ) = Iα(X; Y ).

Proof. Let a denote the probability Pr(X = 0, Y = 0). Since Pr(X = 0) =

Pr(Y = 0) = 1
2
, we must have Pr(X = 0, Y = 0) = Pr(X = 1, Y = 1) = a,
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and Pr(X = 0, Y = 1) = Pr(X = 1, Y = 0) = 1
2
− a. For α > 1, it follows

from definitions 1.47 and 1.49 of section 1.4 that

Iα(X ⊕ Y ) =
1

α− 1

(
1

2

(
2a/

1

2

)α

+
1

2

(
(1− 2a)/

1

2

)α)
− 1 and

Iα(X; Y ) =
1

α− 1

(
2.

1

4

(
a/

1

4

)α

+ 2.
1

4

(
(
1

2
− a)/

1

4

)α)
− 1.

Hence Iα(X⊕Y ) = Iα(X; Y ) for all α > 1. The definitions and the continuity

result of section 1.4.1 imply that equality holds for α = 1 too.

Hence equation (2.2) can be written

Iα(f(V ); g(W )) ≤ iα(q − p),

or

Iα(f(V ); g(V ⊕ E)) ≤ iα(q − p)

if we write E for the error vector associated with transmission over the binary

symmetric channel.

In fact, we conjecture that a rather stronger result holds, at least for

some values α ≥ 1. As in section 1.3.3, we let G denote — here and for

the remainder of this chapter — the elementary abelian 2-group of n-bit

vectors under componentwise modulo 2 addition. Then for any function

g : G → {0, 1} (not necessarily balanced)

Iα(V ; g(V ⊕ E)) ≤ iα(q − p).

Note that this really is a stronger result by virtue of proposition 1.53. We

strengthen this reformulation further by letting g map each element v ∈ G

to a distribution Xv on {0, 1}, determined by a real g(v) ∈ [0, 1] for which

PrXv(1) = g(v).
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If g(v) = 0, Xv always assumes the value 0, and if g(v) = 1, Xv always

assumes the value 1, so this new definition is genuinely an extension of the

previous one.

We state this new conjecture formally, in terms of a parameter α ≥ 1.

Conjecture 2.4. Suppose that V and E are two independent random vari-

ables whose values range over all n-bit vectors, assumed with uniform proba-

bility in the case of V , and with probability given by Pr(e) = pwt eqn−wt e in the

case of E (where wt(e) is the weight of e, i.e. the number of 1s in e). Let f

be any map G → [0, 1], which we identify with a map G → {distributions on

{0, 1}}, in the manner described above. Then the following inequality holds

for all real p ∈ [0, 1]:

Iα(V ; f(V ⊕ E)) ≤ iα(q − p). (2.5)

Corollary 2.6. If conjecture 2.4 holds for at least one value α ≥ 1, then the

question posed in section 2.2 can be answered in the negative.

Proof. If conjecture 2.4 holds for any α ≥ 1, then for any balanced f and g

Iα(f(V )⊕ g(W )) = Iα(f(V ); g(V ⊕ E)) by lemma 2.3

≤ Iα(V ; g(V ⊕ E)) by proposition 1.53

≤ iα(q − p) by conjecture 2.4,

and then the result follows from proposition 2.1.

2.4 Proof of the Conjecture for α = 2

In this section we make use of the Walsh-Hadamard transform to prove con-

jecture 2.4 for order 2 information. As in section 1.3.3, let G denote the
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elementary abelian 2 group of order 2n, and for each f ∈ CG, let D(f)

denote the DFT of f given by

D(f)(v) =
∑
u∈G

(−1)u·vf(u).

Lemma 2.7. Define b ∈ CG by b(v) := pwt vqn−wt v for each v ∈ G. Then

D(b) is given by D(b)(v) = (q − p)wt v.

Proof. By induction. The result is certainly true for n = 1, when b(0) = q

and b(1) = p so D(b)(0) = q + p = 1 and D(b)(1) = q − p. For any n > 1,

assume that it is true for n − 1. Fix any v ∈ G, and, as in section 1.3.3.3,

write v = (v′, vn) for an (n− 1)-bit vector v′ and bit vn. Then

D(b)(v)

=
∑
u∈G

(−1)u·vb(u)

=
∑

u=(u′,0)∈G

(−1)u·vpwt uqn−wt u +
∑

u=(u′,1)∈G

(−1)u·vpwt uqn−wt u

where u′ is an (n− 1)-bit vector

= q
∑

(u′,0)∈G

(−1)u′·v′pwt u′qn−1−wt u′

+ (−1)vnp
∑

(u′,1)∈G

(−1)u′·v′pwt u′qn−1−wt u′

= (q + (−1)vnp)(q − p)wt v′ by the inductive hypothesis

= (q − p)wt v.

Thus the result holds for n. Hence by induction it holds for all n.

Now we can use the properties of the Walsh-Hadamard transform to ob-

tain our proof.

52



Proposition 2.8. Conjecture 2.4 is true for the particular value α = 2.

Proof. First of all, let g be any map in RG. For convenience write a for the

map in RG defined by a(v) :=
∑

e∈G pwt eqn−wt eg(v ⊕ e), and b for the map

b(v) := pwt vqn−wt v (v ∈ G). Note that a = b⊗ g. Hence

∑
v∈G

(∑
e∈G

pwt eqn−wt eg(v ⊕ e)

)2

=
∑
v∈G

a(v)2

= ‖a‖2

= 2−n ‖D(a)‖2 by theorem 1.16, part 1

= 2−n ‖D(b)D(g)‖2 by theorem 1.16, part 2

= 2−n
∑
v∈G

(q − p)2 wt v (D(g)(v))2 by lemma 2.7.

Now suppose that f is any map G → [0, 1]. Observe first that

2−nD(f)(0) = 2−n
∑
u∈G

f(u) = Pr(f(u) = 1|u is uniformly distributed)

and similarly

2−nD(1− f)(0) = Pr(f(u) = 0|u is uniformly distributed).

We will also use the fact that

2−n
∑
v∈G

(D(f)(v))2 =
∑
v∈G

(f(v))2 by theorem 1.16, part 1

≤
∑
v∈G

f(v)

and similarly

2−n
∑
v∈G

(D(1− f)(v))2≤
∑
v∈G

(1− f)(v).
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Now we compute

I2(V ; f(V ⊕ E))

=




∑
v∈G
i=0,1

Pr(f(V ⊕ E) =i) Pr(V = v)

(
Pr(f(V ⊕ E) = i, V = v)

Pr(f(V ⊕ E) = i) Pr(V = v)

)2




− 1 by definitions 1.49 and 1.43

=


2−n

∑
v∈G
i=0,1

Pr(f(V ⊕ E) = i|V = v)2

Pr(f(V ⊕ E) = i)


− 1

= 2−n
∑
v∈G

(∑
e∈G pwt eqn−wt ef(v ⊕ e)

)2

2−nD(f)(0)

+ 2−n
∑
v∈G

(∑
e∈G pwt eqn−wt e(1− f(v ⊕ e))

)2

2−nD(1− f)(0)
− 1

=
2−n

D(f)(0)

(∑
v∈G

(q − p)2wt v (D(f)(v))2

)

+
2−n

D(1− f)(0)

(∑
v∈G

(q − p)2wt v (D(1− f)(v))2

)
− 1

by the considerations above

≤ 2−n

D(f)(0)


(D(f)(0))2 +

∑

v∈G\{0}
(q − p)2 (D(f)(v))2




+
2−n

D(1− f)(0)


(D(1− f)(0))2 +

∑

v∈G\{0}
(q − p)2 (D(1− f)(v))2




− 1 separating
∑

v into
∑

v=0 +
∑

v 6=0
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=
2−n

D(f)(0)

∑

v∈G\{0}
(q − p)2 (D(f)(v))2

+
2−n

D(1− f)(0)

∑

v∈G\{0}
(q − p)2 (D(1− f)(v))2

since D(f)(0) + D(1− f)(0) = 2n

≤ 2−n

D(f)(0)
(q − p)2

(
2nD(f)(0)−D(f)(0)2

)

+
2−n

D(1− f)(0)
(q − p)2

(
2nD(1− f)(0)−D(1− f)(0)2

)

by the results above

= (q − p)2
(
1− 2−nD(f)(0) + 1− 2−nD(1− f)(0)

)

= (q − p)2

= i2(q − p).

Thus we have proved the reformulation (2.5) of conjecture 2.4 for the case

α = 2.

As an immediate consequence of corollary 2.6, we have the following:

Corollary 2.9. The question posed in section 2.2 can be answered in the

negative.

2.5 Towards a Proof for α = 1

We saw in the previous section that the DFT gave a natural proof of con-

jecture 2.4 for order 2 information. In this section we work toward a proof

the result for Shannon information, i.e. the case α = 1. Although we don’t

reach our goal, we do succeed in deriving a number of results of interest in

their own right.
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We start with a definition.

Definition 2.10. For any function f : G → [0, 1] we denote by f̃ the function

G → [−1, 1] defined by the rule

f̃(v) := 1− 2f(v) (v ∈ G).

Now we can rewrite equation (2.5) of conjecture 2.4 in a new form which

will prove to be convenient in due course. We do this by expanding its L.H.S.:

I1(V ; f(V ⊕ E))

= I1(f(V ⊕ E)|V )− I1(f(V ⊕ E)) by lemma 1.52

= 2−n
∑
v∈G

i1 (Pr(f(V ⊕ E) = 0|V = v)− Pr(f(V ⊕ E) = 1|V = v))

− i1 (Pr(f(V ⊕ E) = 0)− Pr(f(V ⊕ E) = 1))

by definitions 1.51 and 1.54.

Now

Pr(f(V ⊕ E) = 0|V = v)− Pr(f(V ⊕ E) = 1|V = v)

=
∑
e∈G

Pr(E = e) (Pr(f(V ⊕ E) = 0|V = v, E = e)

− Pr(f(V ⊕ E) = 1|V = v, E = e))

=
∑
e∈G

pwt eqn−wt e (1− f(v ⊕ e)− f(v ⊕ e))

=
∑
e∈G

pwt eqn−wt ef̃(v ⊕ e).
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Also

Pr(f(V ⊕ E) = 0)− Pr(f(V ⊕ E) = 1)

= 2−n
∑
e∈G

(1− f(v ⊕ e))− 2−n
∑
e∈G

f(v ⊕ e)

= 2−n
∑
v∈G

f̃(v).

Thus we have proved:

Lemma 2.11. With our usual notation,

I1(V ; f(V ⊕ E))

= 2−n
∑
v∈G

i1

(∑
e∈G

pwt eqn−wt ef̃(v ⊕ e)

)
− i1

(
2−n

∑
v∈G

f̃(v)

)
,

and for α = 1 equation (2.5) becomes

2−n
∑
v∈G

i1

(∑
e∈G

pwt eqn−wt ef̃(v ⊕ e)

)
≤ i1

(
2−n

∑
v∈G

f̃(v)

)
+ i1(q − p).

Although we did not highlight the fact, it was intrinsic to the proof of

conjecture 2.4 for the case α = 2 that

1

2
(i2(a) + i2(b)) = i2

(
a + b

2

)
+ i2

(
a− b

2

)

for all a and b in [−1, 1]. This suggests that we should consider a similar

result for α = 1.

Lemma 2.12. For a, b ∈ [−1, 1],

1

2
(i1(a) + i1(b)) ≥ i1

(
a + b

2

)
+ i1

(
a− b

2

)
. (2.13)

We will shortly offer two proofs of this, but first we establish some pre-

liminary results.
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Lemma 2.14. The Taylor expansion of i1 about 0 is given by

i1(x) =
∞∑
i=1

x2i

2i(2i− 1)

which converges for all x ∈ (−1, 1).

Proof. Since, for x ∈ (−1, 1),

i1(x) =
1

2
(1 + x) ln(1 + x) +

1

2
(1− x) ln(1− x),

the first and second derivatives of i1 on (−1, 1) are given by

i′1(x) =
1

2
ln(1 + x)− 1

2
ln(1− x) and

i′′1(x) =
1

1− x2
.

Hence i′′1(x) is given by the series

i′′1(x) =
∞∑
i=1

x2i,

convergent on (−1, 1), from which, given that i1(x) = 1 and i′1(x) = 0, the

required result follows by integrating the R.H.S. twice, term by term; this is

justified by, for example, theorem 9.23 on page 236 of [1].

Lemma 2.15. For a, b ∈ [−1, 1], write x = a+b
2

and y = a−b
2

. Then, provided

x 6= 1 or −1,

1

2
(i1(x+ y)+ i1(x− y)) = i1(x)+

1

2
(1−x)i1

(
y

1− x

)
+

1

2
(1+x)i1

(
y

1 + x

)
.
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Proof. We expand the R.H.S.:

i1(x) +
1

2
(1− x)i1

(
y

1− x

)
+

1

2
(1 + x)i1

(
y

1 + x

)

= i1(x)

+
1

2
(1− x)

(
1− x + y

2(1− x)
ln

(
1− x + y

1− x

)
+

1− x− y

2(1− x)
ln

(
1− x− y

1− x

))

+
1

2
(1 + x)

(
1 + x + y

2(1 + x)
ln

(
1 + x + y

1 + x

)
+

1 + x− y

2(1 + x)
ln

(
1 + x− y

1 + x

))

= i1(x)−
(

1− x

2
ln(1− x) +

1 + x

2
ln(1 + x)

)

+

(
1 + (x + y)

4

)
ln (1 + (x + y)) +

(
1− (x + y)

4

)
ln (1− (x + y))

+

(
1 + (x− y)

4

)
ln (1 + (x− y)) +

(
1− (x− y)

4

)
ln (1− (x− y))

=
1

2
(i1(x + y) + i1(x− y)),

which is the L.H.S., as required.

Now we are in a position to give the two proofs we promised above.

Proof using Taylor expansion of i1. Suppose a and b are both in the

range (−1, 1). Write

A :=
a + b

2
and

B :=
a− b

2
,

so that A, B, A + B and A − B are all in the range (−1, 1). Now, for any

integer r ≥ 0,

(A + B)2r + (A−B)
2r

=
r∑

i=0

(
2r

2i

)
A2iB2r−2i

≥ 2
(
A2r + B2r

)
.
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Hence, comparing corresponding terms in the Taylor expansions,

i1(A + B) + i1(A−B) ≥ 2 (i1(A) + i1(B)) ,

i.e.
1

2
(i1(a) + i1(b)) ≥ i1

(
a + b

2

)
+ i1

(
a− b

2

)
,

as required. This result for a, b in the range (−1, 1) extends to [−1, 1] by

continuity of i1(x) on the closed interval.

Our second proof is as follows:

Proof using convexity of i1. Suppose a and b are in the range (−1, 1),

and write, as above,

A :=
a + b

2
and

B :=
a− b

2
,

so that A, B, A + B and A−B are all in the range (−1, 1). Then

1

2
(i1(a) + i1(b))

=
1

2
(i1(A + B) + i1(A−B))

= i1(A) +
1

2
(1− A)i1

(
B

1− A

)
+

1

2
(1 + A)i1

(
B

1 + A

)
by lemma 2.15

≥ i1(A)

+ i1

(
1

2
(1− A)

(
B

1− A

)
+

1

2
(1 + A)

(
B

1 + A

))
by convexity of i1

= i1(A) + i1(B)

= i1

(
a + b

2

)
+ i1

(
a− b

2

)
,

as required. As before, a continuity argument extends the result to a, b ∈
[−1, 1].
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Having established the truth of lemma 2.12, we see now that it implies

the following interesting result concerning the DFT and i1.

Proposition 2.16. Suppose that f is a function defined on the elementary

abelian group G of order 2n which takes real values in the range [−1, 1]. Then

2−n
∑
v∈G

i1(f(v)) ≥
∑
v∈G

i1(2
−nD(f)(v)). (2.17)

Proof. Recall that

D(f)(v) =
∑
u∈G

(−1)u·vf(u).

The proof proceeds by induction on n.

For n = 1, we need to show that

1

2
(i1(a) + i1(b)) ≥ i1

(
a + b

2

)
+ i1

(
a− b

2

)

for a, b in [−1, 1], which is precisely the assertion of lemma 2.12.

For any n > 1 suppose that the result holds for n − 1. As observed

in 1.3.3.3, we have a natural isomorphism G ' G′ × C2 so that an element

v ∈ G can be written v = (v′, vn) for an (n − 1)-bit vector v′ ∈ G′ and bit

vn ∈ C2. Now

2−n
∑
v∈G

i1(f(v))

= 2−n
∑

v=(v′,0)∈G

i1(f(v)) + 2−n
∑

v=(v′,1)∈G

i1(f(v))

= 2−(n−1)
∑

v′∈G′

1

2
(i1(f((v′, 0))) + i1(f((v′, 1))))

≥ 2−(n−1)
∑

v′∈G′
i1

(
f((v′, 0)) + f((v′, 1))

2

)
+

2−(n−1)
∑

v′∈G′
i1

(
f((v′, 0))− f((v′, 1))

2

)
by lemma 2.12
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≥
∑

v′∈G′
i1

(
2−(n−1)

∑

u′∈G′
(−1)u′·v′

(
f((u′, 0)) + f((u′, 1))

2

))
+

∑

v′∈G′
i1

(
2−(n−1)

∑

u′∈G′
(−1)u′·v′

(
f((u′, 0))− f((u′, 1))

2

))

by the inductive hypothesis

=
∑

v′∈G′
i1


2−n

∑

u′∈G′
b=0,1

(−1)(u′,b)·(v′,0)f((u′, b))


 +

∑

v′∈G′
i1


2−n

∑

u′∈G′
b=0,1

(−1)(u′,b)·(v′,1)f((u′, b))




=
∑
v∈G

i1

(
2−n

∑
u∈G

(−1)u·vf(u)

)
.

Thus the result also holds for n.

The result follows for all n ≥ 1 by induction.

Next we apply this result in the context of the conjecture to obtain the

following:

Corollary 2.18. With our usual notation,

I1(V ; f(V ⊕ E)) ≥
∑

v∈G\{0}
i1

(
2−nD(f̃)(v)(q − p)wt v

)
.

Proof. As before, write a for the map in CG defined by

a(v) =
∑
e∈G

pwt eqn−wt ef̃(v ⊕ e),

and b for the map

b(v) = pwt vqn−wt v.
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Then

L.H.S.

= 2−n
∑
v∈G

i1

(∑
e∈G

pwt eqn−wt ef̃(v ⊕ e)

)
− i1

(
2−n

∑
v∈G

f̃(v)

)

by lemma 2.11

= 2−n
∑
v∈G

i1(a(v))− i1

(
2−nD(f̃)(0)

)

≥
∑
v∈G

i1
(
2−nD(a)(v)

)− i1

(
2−nD(f̃)(0)

)
by the preceding result

=
∑
v∈G

i1

(
2−nD(b⊗ f̃)(v)

)
− i1

(
2−nD(f̃)(0)

)

=
∑
v∈G

i1

(
2−nD(b)(v)D(f̃)(v)

)
− i1

(
2−nD(f̃)(0)

)

by theorem 1.16, part 2

=
∑
v∈G

i1

(
2−n(q − p)wt vD(f̃)(v)

)
− i1

(
2−nD(f̃)(0)

)
by lemma 2.7

=
∑

v∈G\{0}
i1

(
2−n(q − p)wt vD(f̃)(v)

)

= R.H.S.

This result is interesting because it gives us an inequality on the quantity

I1(V ; f(V ⊕E)) of the opposite kind to that of conjecture 2.4. The functions

f(x1, x2, . . . , xn) = xr

for r = 1, . . . , n and their mod 2 complements are precisely those choices

for which D(f̃)(v) vanishes except on vectors v of weight wt v = 1, and

are precisely those functions for which the bounds of conjecture 2.4 and

corollary 2.18 are both attained by I(V ; f(V ⊕ E)). We can establish this

claim with the help of the following result:

63



Proposition 2.19. Equality is achieved in equation (2.17) of proposition

2.16 iff f is a map v 7→ a(−1)u ·v for some a ∈ [−1, 1] and u ∈ G.

Proof. First we consider lemma 2.12. From the proof we gave using the

Taylor expansion of i1, it is clear that we have equality in equation (2.13) iff

A = 0 or B = 0, where A = a+b
2

and B = a−b
2

: i.e. iff a = b or a = −b.

We can now prove proposition 2.19 by induction on n, where |G| = 2n.

For n = 1, proposition 2.16 follows directly from lemma 2.12, and we

have equality iff

f(0) = a, f(1) = a or f(0) = a, f(1) = −a for some a ∈ [−1, 1]

i.e. iff

f : v 7→ a(−1)u·v for some a ∈ [−1, 1], u ∈ G.

Suppose now that n > 1 and this result holds for n − 1. As previously,

we identify G with G′×C2, where G′ is elementary abelian of order 2n−1 and

C2 is cyclic of order 2, and write any v ∈ G as v = (v′, vn) for an (n− 1)-bit

vector v′ ∈ G′ and bit vn ∈ C2. By the proof of proposition 2.16, we see that

we have equality in equation (2.17) iff

f(v′, 0) = f(v′, 1) or f(v′, 0) = −f(v′, 1) for each v′ ∈ G′ (2.20)

and the maps

v′ 7→ f(v′, 0) + f(v′, 1)

2

and

v′ 7→ f(v′, 0)− f(v′, 1)

2

both give equality in proposition 2.16. Suppose these conditions are satisfied.

By the inductive hypothesis,

f(v′, 0) + f(v′, 1)

2
= a0(−1)u′0·v′ for all v′ ∈ G, and

f(v′, 0)− f(v′, 1)

2
= a1(−1)u′1·v′ for all v′ ∈ G
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for some values a0, a1 ∈ [−1, 1] and u′0, u
′
1 ∈ G′. Considering v′ = 0 in

equation (2.20), either f(v′, 0) = f(v′, 1) or f(v′, 0) = −f(v′, 1). In the first

case, a1 = 0 and, for all v′ ∈ G′, vn ∈ C2,

f(v′, vn) =

(
f(v′, 0) + f(v′, 1)

2

)
+ (−1)vn

(
f(v′, 0)− f(v′, 1)

2

)

= a0(−1)u′0·v′

= a0(−1)(u′0,0)·(v′,vn)

In the second case, a0 = 0 and, for all v′ ∈ G′, vn ∈ C2,

f(v′, vn) =

(
f(v′, 0) + f(v′, 1)

2

)
+ (−1)vn

(
f(v′, 0)− f(v′, 1)

2

)

= (−1)vna1(−1)u′0·v′

= a1(−1)(u′0,1)·(v′,vn)

Thus, either way, f is of the required form v 7→ a(−1)u·v. Conversely, it is

not hard to see that if f is of this form then the two conditions above are

satisfied, and we have equality in equation (2.17).

The result follows for all n ≥ 1 by induction.

Corollary 2.21. If q − p 6= 0, the functions

f(x1, x2, . . . , xn) = xr

and

f(x1, x2, . . . , xn) = xr ⊕ 1

for r = 1, . . . , n are precisely those functions for which the bounds of conjec-

ture 2.4 and corollary 2.18 are both attained by I(V ; f(V ⊕ E)).

Proof. Assume that q−p 6= 0. By the proof of corollary 2.18 and proposition

2.19, it follows that

I1(V ; f(V ⊕ E)) =
∑

v∈G\{0}
i1

(
2−nD(f̃)(v)(q − p)wt v

)
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iff f̃(v) = a(−1)u·v for all v ∈ V , for some a ∈ [−1, 1] and some u ∈ G, or,

equivalently, iff

2−nD(f̃)(v) =





a if v = u;

0 otherwise.

Therefore, the equation

I1(V ; f(V ⊕ E)) = i1(q − p)

holds also iff u 6= 0 and

i1(a(q − p)wt u) = i1(q − p)

i.e. iff a = 1 or −1 and wt u = 1. These parameters correspond precisely to

the functions specified in the statement of the result.

Consider now the expression

2−n
∑
v∈G

iα(
∑
e∈G

pwt eqn−wt ef̃(v ⊕ e)).

We have seen that this is

2−n
∑
v∈G

iα((b⊗ f̃)(v))

(with b defined as in the proof of corollary 2.18); this in turn can be expressed

2−n
∑
v∈G

iα(2−nD(D(b⊗ f̃))(v))

i.e.

2−n
∑
v∈G

iα

(∑
u∈G

(−1)u·v2−nD(f̃)(u)(q − p)wt u

)

We record this fact for future reference:
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Lemma 2.22. With the usual notation,

2−n
∑
v∈G

iα

(∑
e∈G

pwt eqn−wt ef̃(v ⊕ e)

)

= 2−n
∑
v∈G

iα

(∑
u∈G

(−1)u·v2−nD(f̃)(u)(q − p)wt u

)

We note also that 2−nD(f̃)(0) = 2−n
∑

v∈G f̃(v) is the average value of f̃ .

These considerations motivated the following conjecture:

Conjecture 2.23. Suppose we have m real values xr ∈ [−1, 1] for 1 ≤ r ≤
m. Write x̄ for the average of the xr, x̄ = 1

m

∑m
r=1 xr. Then for all real

λ ∈ [0, 1],

1

m

m∑
r=1

i1(x̄ + λ(xr − x̄)) ≤ i1(x̄) + i1(λ).

However, even if it can be proved, conjecture 2.23 does not provide the

immediate proof of conjecture 2.4 for α = 1 that we are seeking. To see this,

set n = 3, and define

f̃(v) =





1 if wt v ≤ 1

−1 if wt v ≥ 2

Thus f̃ is balanced. But consider the term for v = 0 in

∑
v∈G

i1(
∑
e∈G

pwt eqn−wt ef̃(v ⊕ e)).

This equals

i1(q
3 + 3q2p− 3qp2 − p3),
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and

q3 + 3q2p− 3qp2 − p3

= (q − p)(q2 + pq + p2 + 3pq)

= (q − p)((p + q)2 + 2pq)

= (q − p)(1 + 2pq)

> q − p if p, q 6= 0.

To continue our search for a proof of conjecture 2.4 for α = 1, we return to

proposition 2.16 and corollary 2.18. For convenience, write, for each v ∈ G,

cv := 2−nD(f̃)(v).

By corollary 2.18,

I1(V ; f(V ⊕ E)) ≥
∑

v∈G\{0}
i1(cv(q − p)wt v).

We can derive an upper bound for the R.H.S. of this equation using

proposition 2.16 in two different ways. First, observe that for the function

g̃ : v 7→ c0 + (q − p)(f̃(v)− c0)

we have

2−nD(g̃)(v) =





c0 if v = 0

(q − p)cv if v 6= 0

Therefore

∑

v∈G\{0}
i1(cv(q − p)wt v)

≤
∑

v∈G\{0}
i1(cv(q − p))

≤ −i1(c0) + 2−n
∑
v∈G

i1(c0 + (q − p)(f̃(v)− c0)) by proposition 2.16
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Alternatively,

∑

v∈G\{0}
i1(cv(q − p)wt v)

≤
∑

v∈G\{0}
i1(cv(q − p))

= −i1(c0(q − p)) +
∑
v∈G

i1(cv(q − p))

≤ −i1(c0(q − p)) + 2−n
∑
v∈G

i1((q − p)f̃(v)) by proposition 2.16.

We can now hope, optimistically, that the effect of the ≥ inequality is

more than compensated for by the ≤ one, and that one of the inequalities

I1(V ; f(V ⊕ E)) ≤ −i1(c0) + 2−n
∑
v∈G

i1(c0 + (q − p)(f̃(v)− c0)) (2.24)

and

I1(V ; f(V ⊕ E)) ≤ −i1(c0(q − p)) + 2−n
∑
v∈G

i1((q − p)f̃(v)) (2.25)

holds for all f : G → [0, 1]. Recall that, by lemma 2.11,

I1(V ; f(V ⊕ E)) = 2−n
∑
v∈G

i1(
∑
e∈G

pwt eqn−wt ef̃(v ⊕ e))− i1 (c0) .

The first of these, (2.24), is a promising looking inequality, because, if

true, conjecture 2.4 for α = 1 might follow by applying conjecture 2.23 to

its R.H.S.. Moreover, when q − p = 0, both sides equal 0; when q − p = 1,

both sides equal 2−n
∑

v∈G i1(f̃(v)) − i1(c0); and both sides are equal when

n = 1. However a computer search reveals that it does not always hold, even

for n = 2 (and hence for all n ≥ 2). For example, with the parameters

f̃(00) = −0.4, f̃(01) = 0.5, f̃(10) = 0.5, f̃(11) = 1, q − p = 0.9,

the L.H.S. > 1.004 × R.H.S..
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The second of these, inequality (2.25), is not true even for n = 1, when

in fact precisely the opposite inequality holds:

Proposition 2.26. For any A,B ∈ [−1, 1] and λ ∈ [0, 1]

1

2
(i1(A + λB) + i1(A− λB))− i1(A)

≥ 1

2
(i1(λ(A + B)) + i1(λ(A−B)))− i1(λA)

with equality iff A = 0 or B = 0 or λ = 1.

Proof. By continuity, it suffices to establish the result for A,B ∈ (−1, 1).

For any r ≥ 1,

1

2

(
(A + λB)2r + (A− λB)2r

)− A2r

=
r∑

i=0

(
2r

2i

)
A2i(λB)2r−2i − A2r

=
r∑

i=1

(
2r

2i

)
A2i(λB)2r−2i

≥
r∑

i=1

(
2r

2i

)
(λA)2i(λB)2r−2i

=
1

2

(
(λ(A + B))2r + (λ(A−B))2r

)− (λA)2r,

with equality iff A = 0 or B = 0 or λ = 1. The result follows after dividing

both sides by 2r(2r − 1) and summing for r = 1, 2, . . ., on account of the

Taylor expansion

i1(x) =
∞∑

r=1

x2r

2r(2r − 1)

established in lemma 2.14.

To finish off this rather lengthy section, we present (in proposition 2.28)

another inequality in I1(V ; f(V ⊕ E)). First though, we need a preliminary

lemma.
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Lemma 2.27. For reals a, b ∈ [−1, 1] and real λ ∈ [0, 1],

i1

(
a + b

2
+ λ

a− b

2

)
+ i1

(
a + b

2
− λ

a− b

2

)
≤ i1 (a) + i1 (b) .

Proof. Denote the L.H.S. by g(λ). g is twice differentiable on (0, 1) with

g′(0) = 0;

g′′(λ) =

(
a− b

2

)2

i′′1

(
a + b

2
+ λ

a− b

2

)
+

(
a− b

2

)2

i′′1

(
a + b

2
− λ

a− b

2

)

≥ 0 by convexity of i1.

Hence g(x) is non-decreasing on [0, 1], so is bounded above on that interval

by g(1) = i1 (a) + i1 (b).

Proposition 2.28. With notation as usual,

2−n
∑
v∈G

i1(
∑
e∈G

pwt eqn−wt ef̃(v ⊕ e)) ≤ 2−n
∑
v∈G

i1(f̃(v)).

Proof. We proceed by induction. For n = 1 the L.H.S. equals

1

2

(
i1(qf̃(0) + pf̃(1)) + i1(pf̃(0) + qf̃(1))

)

=
1

2

(
i1

(
f̃(0) + f̃(1)

2
+ (q − p)

f̃(0)− f̃(1)

2

)
+

+ i1

(
f̃(0) + f̃(1)

2
− (q − p)

f̃(0)− f̃(1)

2

))

≤ 1

2

(
i1(f̃(0)) + i1(f̃(1))

)
by lemma 2.27,

as required.

Suppose now that n > 1, and the result holds for n − 1. As in sec-

tion 1.3.3.3, we identify the group G of n-bit vectors with the group G′×C2
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of pairs (u′, un), where u′ ∈ G′ is an (n− 1)-bit vector and un ∈ C2 is a bit.

For convenience we denote by f̃i, for i = 1, 2, the map G′ → [−1, 1] given by

v′ 7→ f̃(v′, i). Now we calculate

2−n
∑
v∈G

i1

(∑
e∈G

pwt eqn−wt ef̃(v ⊕ e)

)

= 2−n


 ∑

v=(v′,0)∈G

i1


 ∑

e=(e′,0)∈G

pwt eqn−wt ef̃(v ⊕ e)

+
∑

e=(e′,1)∈G

pwt eqn−wt ef̃(v ⊕ e)




+
∑

v=(v′,1)∈G

i1


 ∑

e=(e′,0)∈G

pwt eqn−wt ef̃(v ⊕ e)

+
∑

e=(e′,1)∈G

pwt eqn−wt ef̃(v ⊕ e))







= 2−n


 ∑

(v′,0)∈G

i1


q

∑

(e′,0)∈G

pwt e′qn−1−wt e′ f̃0(v
′ ⊕ e′)

+ p
∑

(e′,1)∈G

pwt e′qn−1−wt e′ f̃1(v
′ ⊕ e′)




+
∑

(v′,1)∈G

i1


q

∑

(e′,0)∈G

pwt e′qn−1−wt e′ f̃1(v
′ ⊕ e′)

+ p
∑

(e′,1)∈G

pwt e′qn−1−wt e′ f̃0(v
′ ⊕ e′))






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≤ 2−n
∑

v′∈G′

[
i1

( ∑

e′∈G′
pwt e′qn−1−wt e′ f̃0(v

′ ⊕ e′)

)

+ i1

( ∑

e′∈G′
pwt e′qn−1−wt e′ f̃1(v

′ ⊕ e′)

)]
by lemma 2.27

≤ 2−n
∑

v′∈G′

[
i1

(
f̃0(v

′)
)

+ i1

(
f̃1(v

′)
)]

by the inductive hypothesis

= 2−n
∑
v∈G

i1

(
f̃(v)

)
,

so the result holds for n.

The result is therefore proven by induction.

2.6 The Generalised Conjecture

In the previous section we considered two inequalities, equations (2.24) and

(2.25), neither of which lead to a proof of conjecture 2.4. In this section we

consider the following variant of equation (2.25)

Iα(V ; f(V ⊕ E)) ≤ 2−n
∑
v∈G

iα((q − p)f̃(v)),

to which we give the epithet “generalised conjecture”. If it holds for a func-

tion f then so does conjecture 2.4 for α = 1, since

iα((q − p)a) ≤ iα(q − p)

for any a ∈ [−1, 1]. Indeed, if f is {0, 1}-valued, then it is precisely the

inequality of conjecture 2.4.

Using lemma 2.11, we can equivalently express the generalised conjecture

for α = 1 as

2−n
∑
v∈G

i1

(∑
e∈G

pwt eqn−wt ef̃(v ⊕ e)

)
≤ i1

(
f̃
)

+ 2−n
∑
v∈G

i1

(
(q − p)f̃(v)

)

(2.29)
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where f̃ = 2−n
∑

v∈G f̃(v), or, using lemma 2.22, as

2−n
∑
v∈G

i1

(∑
u∈G

(−1)u·v2−nD(f̃)(u)(q − p)wt u

)

≤ i1

(
2−nD(f̃)(0)

)
+ 2−n

∑
v∈G

i1

(
2−n

∑
u∈G

(−1)u·vD(f̃)(u)(q − p)

)
(2.30)

2.6.1 Proof of Generalised Conjecture for α = 1, n = 1

In this section we prove the generalised conjecture for the case α = 1 and

n = 1. For convenience, write

A :=
1

2
D(f̃)(0),

B :=
1

2
D(f̃)(1), and

λ := q − p,

so that (2.30) becomes

1

2
(i1(A + λB) + i1(A− λB)) ≤ i1 (A) +

1

2
(i1(λ (A + B)) + i1(λ (A−B)))

i.e.

i1 (A) +
1

2
(i1(λ (A + B)) + i1(λ (A−B)))

− 1

2
(i1(A + λB) + i1(A− λB)) ≥ 0

The value of the L.H.S. is 0 at λ = 0, so it suffices to show that its derivative

with respect to λ is ≥ 0 on [0, 1], i.e.

1

2

(
(A + B) i

′
1(λ (A + B)) + (A−B) i

′
1(λ (A−B))

)

− 1

2

(
Bi

′
1(A + λB)−Bi

′
1(A− λB)

)
≥ 0.
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The value of the L.H.S. of this new inequality is also 0 at λ = 0, so, applying

the same argument once again, it suffices to show that its derivative with

respect to λ is ≥ 0 on [0, 1], i.e.

1

2

(
(A + B)2 i

′′
1(λ (A + B)) + (A−B)2 i

′′
1(λ (A−B))

)

− 1

2
B2

(
i
′′
1(A + λB) + i

′′
1(A− λB)

)
≥ 0.

Hence it suffices to show that

(A + B)2

1− λ2 (A + B)2 +
(A−B)2

1− λ2 (A−B)2 −
B2

1− (A + λB)2 −
B2

1− (A− λB)2 ≥ 0.

To do this we first consider the differences

(A + B)2

1− λ2(A + B)2
+

(A−B)2

1− λ2(A−B)2
−

(
B2

1− λ2B2
+

B2

1− λ2B2

)

= 2A2 1 + 3λ2B2 − λ2A2

(
1− λ2(A + B)2

) (
1− λ2(A−B)2

) (
1− λ2B2

)

and

(
B2

1− (A + λB)2
+

B2

1− (A− λB)2

)
−

(
B2

1− λ2B2
+

B2

1− λ2B2

)

= 2B2A2 1 + 3λ2B2 − A2

(1− (A + λB)2) (1− (A− λB)2)
(
1− λ2B2

)

We readily see that it suffices to show that

1(
1− λ2(A + B)2

) (
1− λ2(A−B)2

)− B2

(1− (A + λB)2) (1− (A− λB)2)
≥ 0,

or

(
1− (A + λB)2

) (
1− (A− λB)2

)

−B2
(
1− λ2(A + B)2

) (
1− λ2(A−B)2

) ≥ 0. (2.31)
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The L.H.S. equals

(
1− A2 − λ2B2 − 2λAB

) (
1− A2 − λ2B2 + 2λAB

)

−B2
(
1− λ2A2 − λ2B2 − 2λ2AB

) (
1− λ2A2 − λ2B2 + 2λ2AB

)

=
(
1− A2 − λ2B2

)2 − 4λ2A2B2

−B2
((

1− λ2B2 − λ2A2
)2 − 4λ4A2B2

)

=
(
1− A2 − λ2B2

)2 −B2
(
1− λ2B2 − λ2A2

)2

− 4λ2A2B2(1− λ2B2).

However,

(
1− λ2B2 + λ2A2

)2 − (
1− λ2B2 − λ2A2

)2

= 4λ2A2
(
1− λ2B2

)
,

so we can rewrite inequality (2.31) as

(
1− A2 − λ2B2

)2 −B2
(
1− λ2B2 + λ2A2

)2 ≥ 0.

Since our original expression was symmetric in B and −B we can assume

without any loss of generality that B ≥ 0. Hence it is sufficient to show that

1− A2 − λ2B2 −B
(
1− λ2B2 + λ2A2

) ≥ 0.

However

1− A2 − λ2B2(1−B)−B − λ2A2B

≥ 1− A2 −B2(1−B)−B − A2B

= (1 + B) (1− (A + B)) (1 + (A−B))

≥ 0,

as required.
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2.6.2 Extrema of the Generalised Conjecture

In this section we consider a new approach towards a proof of the generalised

conjecture for α = 1. Once again we use techniques from calculus, although

the strategy differs from that used in the previous section. The principle here

is to extremise the difference

2−n
∑
v∈G

i1

(∑
u∈G

(−1)u·vcu(q − p)wt u

)

−
(

i1(c0) + 2−n
∑
v∈G

i1

(∑
u∈G

(−1)u·vcu(q − p)

))
(2.32)

over reals cv (v ∈ G) in the region T ⊆ R|G| defined by

(cv)v∈G ∈ T ⇔
∣∣∣∣∣
∑
u∈G

cu(−1)u·v
∣∣∣∣∣ < 1 for all v ∈ G.

For convenience, write λ for q−p, as before. Setting the partial derivative

of equation (2.32) with respect to each cw (w ∈ G) equal to 0, we obtain the

following set of equations satisfied at an extremum (cv)v∈G of (2.32):

∑
v∈G

i′1

(∑
u∈G

(−1)u·vcuλ
wt u

)
(−1)w·vλwt w

=





∑
v∈G i

′
1

(∑
u∈G(−1)u·vcuλ

)
(−1)w·vλ for all w ∈ G \ {0};

2ni
′
1(c0) +

∑
v∈G i

′
1

(∑
u∈G(−1)u·vcuλ

)
λ at w = 0.

Note that i
′
1(−x) = −i

′
1(x) for all x ∈ (−1, 1), so these equations can be

rewritten

∑
v∈G

i
′
1

(∑
u∈G

(−1)(u+w)·vcuλ
wt u

)
λwt w

=





∑
v∈G i

′
1

(∑
u∈G(−1)(u+w)·vcuλ

)
λ (w ∈ G \ {0});

2ni
′
1(c0) +

∑
v∈G i

′
1

(∑
u∈G(−1)u·vcuλ

)
λ (w = 0).
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Exponentiating each side of this equation, we obtain the following equa-

tions, which determine an extremum:

(∏
v∈G

1 +
∑

u∈G(−1)(u+w)·vcuλ
wt u

1−∑
u∈G(−1)(u+w)·vcuλ

wt u

)λ(wt w)−1

=
∏
v∈G

1 +
∑

u∈G(−1)(u+w)·vcuλ

1−∑
u∈G(−1)(u+w)·vcuλ

(2.33a)

for all w ∈ G \ {0}, and, corresponding to w = 0,

∏
v∈G

1 +
∑

u∈G(−1)u·vcuλ
wt u

1−∑
u∈G(−1)u·vcuλ

wt u =

(
1 + c0

1− c0

)2n
(∏

v∈G

1 +
∑

u∈G(−1)u·vcuλ

1−∑
u∈G(−1)u·vcuλ

)λ

(2.33b)

We have the following rather limited result concerning extrema.

Theorem 2.34. If the function

f̃ : v 7→ du1(−1)v·u1 + du2(−1)v·u2

for distinct elements u1, u2 ∈ G\{0} defines a map G → [−1, 1], f̃ extremises

the generalised conjecture for any λ = q − p ∈ (0, 1) iff wt u1 = 1 if du1 6= 0

and wt u2 = 1 if du2 6= 0.

Proof. For this function f̃ , the values cv := 2−nD(f̃)(v) (v ∈ G) satisfy

cv =





dv if v = u1 or v = u2;

0 otherwise.

First, suppose that the latter condition is satisfied: we will show then that f̃

extremises the generalised conjecture, i.e. equations (2.33) hold for all w ∈ G.

They certainly hold whenever wt w = 1, so fix any w ∈ G for which wt w 6= 1.

Choose v′ ∈ G so that (ui + w) · v′ = 1 for each i ∈ {0, 1} for which dui
6= 0.
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Then

∏
v∈G

1 +
∑

u∈G(−1)(u+w)·vcuλ
wt u

1−∑
u∈G(−1)(u+w)·vcuλ

wt u

=
∏
v∈G

1 +
∑

u∈G(−1)(u+w)·(v+v′)cuλ
wt u

1−∑
u∈G(−1)(u+w)·(v+v′)cuλ

wt u

=
∏
v∈G

1 + (−1)(u+w)·v′ ∑
u∈G(−1)(u+w)·vcuλ

wt u

1− (−1)(u+w)·v′ ∑
u∈G(−1)(u+w)·vcuλ

wt u

= 1
/ (∏

v∈G

1−∑
u∈G(−1)(u+w)·vcuλ

wt u

1 +
∑

u∈G(−1)(u+w)·vcuλ
wt u

)

from which we conclude that

∏
v∈G

1 +
∑

u∈G(−1)(u+w)·vcuλ
wt u

1−∑
u∈G(−1)(u+w)·vcuλ

wt u = 1.

By the same argument

∏
v∈G

1 +
∑

u∈G(−1)(u+w)·vcuλ

1−∑
u∈G(−1)(u+w)·vcuλ

= 1,

and, noting, for the case w = 0, that c0 = 0, it follows that equation (2.33)

holds. Hence f̃ extremises the generalised conjecture.

Suppose, conversely, that f̃ extremises the generalised conjecture. By

interchanging the labels u1 and u2 if necessary, we may assume that wt u1 ≤
wt u2. Suppose for a contradiction that 1 ≤ wt u1 < wt u2 and du2 6= 0. Since

f̃ is an extremum iff −f̃ is, we may assume also that du2 > 0. Choose any

v′ ∈ G for which v′ · (u1 +u2) = 1. Now, with the intention of demonstrating

that the extremum equation for w = u2 does not hold, we compute
(∏

v∈G

1 + (−1)(u1+u2)·vdu1λ
wt u1 + du2λ

wt u2

1− (−1)(u1+u2)·vdu1λ
wt u1 − du2λ

wt u2

)2

=
∏
v∈G

[(
1 + (−1)(u1+u2)·vdu1λ

wt u1 + du2λ
wt u2

1− (−1)(u1+u2)·vdu1λ
wt u1 − du2λ

wt u2

)

(
1 + (−1)(u1+u2)·(v+v′)du1λ

wt u1 + du2λ
wt u2

1− (−1)(u1+u2)·(v+v′)du1λ
wt u1 − du2λ

wt u2

)]
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=
∏
v∈G

[(
1 + (−1)(u1+u2)·vdu1λ

wt u1 + du2λ
wt u2

1− (−1)(u1+u2)·vdu1λ
wt u1 − du2λ

wt u2

)

(
1− (−1)(u1+u2)·vdu1λ

wt u1 + du2λ
wt u2

1 + (−1)(u1+u2)·vdu1λ
wt u1 − du2λ

wt u2

)]

=
∏
v∈G

((
1 + du2λ

wt u2
)2 − d2

u1
λ2wt u1

(
1 + du2λ

wt u2
)2 − d2

u1
λ2wt u1

)
(note this is ≥ 1)

<
∏
v∈G

(
(1 + du2λ)2 − d2

u1
λ2

(1− du2λ)2 − d2
u1

λ2

)

=

(∏
v∈G

1 + (−1)(u1+u2)·vdu1λ
wt u1 + du2λ

wt u2

1− (−1)(u1+u2)·vdu1λ
wt u1 − du2λ

wt u2

)2

where the last line is obtained from the previous by an argument similar to

that connecting all the lines above those two. Therefore

(∏
v∈G

1 + (−1)(u1+u2)·vdu1λ
wt u1 + du2λ

wt u2

1− (−1)(u1+u2)·vdu1λ
wt u1 − du2λ

wt u2

)λwt u2−1

<
∏
v∈G

1 + (−1)(u1+u2)·vdu1λ
wt u1 + du2λ

wt u2

1− (−1)(u1+u2)·vdu1λ
wt u1 − du2λ

wt u2

contradicting the extremum equation corresponding to w = u2. The result

follows.

2.7 Conjecture and Generalised Conjecture

for Large α

In this concluding section of this chapter we show that neither the conjecture

(conjecture 2.4) nor the generalised conjecture (section 2.6) holds for all f

and all α ≥ 1.

Consider the quantity Iα(V ; f(V ⊕ E)) for balanced f and α > 1. Let

(X,Y ) denote the joint distribution (V, f(V ⊕ E)), so that for any v ∈ V
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and i ∈ {0, 1},

Pr(X,Y )(v, i) = 2−n Pr(f(V ⊕ E) = i|V = v)

=





2−n
∑

e∈G pwt eqn−wt e(1− f(v ⊕ e)) for i = 0;

2−n
∑

e∈G pwt eqn−wt ef(v ⊕ e) for i = 1.

Hence

Iα(V ; f(V ⊕ E))

= dα((X, Y ); X, Y )

=
1

α− 1

[∑
v∈G

2−n 1

2

(∑
e∈G f(v ⊕ e)pwt eqn−wt e

1/2

)α

+
∑
v∈G

2−n 1

2

(∑
e∈G(1− f(v ⊕ e))pwt eqn−wt e

1/2

)α

− 1

]

Since

iα(q − p) =
1

α− 1

(
1

2
((1 + (q − p))α + (1− (q − p))α)− 1

)

it follows that

Iα(V ; f(V ⊕ E)) ≤ iα(q − p)

⇔
∑
v∈G

2−n 1

2

(∑
e∈G f(v ⊕ e)pwt eqn−wt e

1/2

)α

+
∑
v∈G

2−n 1

2

(∑
e∈G(1− f(v ⊕ e))pwt eqn−wt e

1/2

)α

≤ 1

2
((1 + (q − p))α + (1− (q − p))α)

⇔
[∑

v∈G

2−n

(∑
e∈G f(v ⊕ e)pwt eqn−wt e

1/2

)α

+
∑
v∈G

2−n

(∑
e∈G(1− f(v ⊕ e))pwt eqn−wt e

1/2

)α
]1/α

≤ [(2q)α + (2p)α]1/α
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If n and f are fixed, then for sufficiently large α this condition becomes

max
v∈G

{∑
e∈G f(v ⊕ e)pwt eqn−wt e

1/2
,

∑
e∈G(1− f(v ⊕ e))pwt eqn−wt e

1/2

}

≤ 2q

i.e.

max
v∈G

{∣∣∣∣∣
∑
e∈G

f(v ⊕ e)pwt eqn−wt e −
∑
e∈G

(1− f(v ⊕ e))pwt eqn−wt e

∣∣∣∣∣

}
≤ q − p

However, we have already seen a counterexample to this — the function f

defined, for n = 3, by

f̃(v) =





1 if wt v ≤ 1;

−1 if wt v ≥ 2.

Hence neither conjecture nor generalised conjecture holds for all f , n and α.
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Chapter 3

A Problem In Cryptology

3.1 Introduction

In section 1.5 of chapter 1, we introduced the definition of a stream cipher,

and of a known plaintext attack on a stream cipher. In this chapter we con-

cern ourselves with the problem of known plaintext cryptanalysis of stream

ciphers arising from keystream generators whose state space is an elementary

abelian 2-group of order 2n, which we identify with the vector space of n-bit

vectors over the field GF(2) with 2 elements. In this chapter we let V denote

this group (rather than the space of maps from the group to C, as we had in

chapter 1).

In section 3.2 we consider the implications of replacing the deterministic

equations for the keystream bits in terms of the initial state by approxi-

mations, which will, generally, be probabilistic. We assess how many such

derived equations are needed to obtain a result about the initial state. From

section 3.3 onwards, we focus our attention on the case when state transition

is vector space isomorphism of V — the stream cipher is “linearly clocking”.

It turns out that the DFT is useful, both as a tool for theoretical analy-
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sis, and also as one yielding practical solutions to our original problem. In

section 3.8 we show how the cryptanalytic ideas arising from simultaneous

correlation lead to improved attacks using a method derived from Gallager’s

techniques (described in section 1.5.4).

The material in sections 3.2 to 3.6 of this chapter is essentially that of [5].

Section 3.7 presents the additional material cited in section 3.2 of the pa-

per [5], while section 3.8 contains more recent material.

3.1.1 Concerning Notation used in this Chapter

The information function I used in this chapter denotes Shannon information

measured in bits, that is, with logarithms to base 2, which we denote by log;

we retain the notation ln for natural logarithms. Hence I = (log e)I1.

3.2 Maximum Likelihood Attacks on Stream

Ciphers

3.2.1 The Keystream Generator

Throughout this chapter we shall be considering stream ciphers derived from

keystream generators as defined in section 1.5.2. Thus, with the notation

introduced there, the keystream bits b1, . . . , bN produced by such a keystream

generator satisfy

bi = f(T ix) (i = 1, . . . , N) (3.1)

when x assumes the value of the key, or key-dependent value which, in this

chapter, we will not distinguish from the key itself. We identify V with

the set of possible n-bit keystream generator states, and assume that T is

bijective on V .
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3.2.2 Maximum Likelihood Attack

When analysing a stream cipher, an attacker can sometimes benefit by mod-

elling some pseudo-random bits within the system as genuinely random ones.

The correlation attacks described by Siegenthaler [13] are a well-known ex-

ample of this. In the case of a function g with input consisting of m pseudo-

random bits, we can derive a new — in general, non-deterministic — function

ḡ by modelling certain arguments as truly random inputs. These thoughts

motivate a definition we make shortly, after a preliminary one.

Definition 3.2. The orthogonal complement (with respect to the standard

basis of V ) of a subspace S of V is denoted S⊥ and defined to be the set

{u ∈ V : u · v = 0 for all v ∈ S}

(Recall that we defined inner product on V just before lemma 1.14.)

It is not hard to see that S⊥ is itself a subspace of V . We are now able

to make the definition mentioned above:

Definition 3.3. For any function g : V → {0, 1} and subspace S ≤ V ,

we define a reduced version, gS, of g, by taking, for each x ∈ V , gS(x) to

be the random variable which assumes each of the values 0 and 1 with the

probability that g assumes that value on a uniformly selected element of the

coset x + S⊥.1

Returning to our keystream generator, we observe that for any subspace

U ≤ V , the equations (3.1) can be reduced, in this technical sense, to

bi = fU(T ix) (i = 1, . . . , N), (3.4)

1Note that we use cosets of S⊥ in this definition in order that section 3.4 can derive

a result concerning a DFT which equals 0 for arguments outside S. We also show in the

same section that (S⊥)⊥ = S, so we could instead have made our definition here in terms

of cosets of S, and derived a result in section 3.4 about a DFT vanishing outside S⊥.
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corresponding to a reduction of the output function, or to

bi = f ◦ T i
U(x) (i = 1, . . . , N), (3.5)

corresponding to a reduction of the key space; we will also use a common

symbolism

bi = gi(x) (i = 1, . . . , N). (3.6)

For either of these reductions we may attempt to determine the most

likely x ∈ V given the probabilistic equations hold: that is, maximise

Pr(x|gi(x) = bi ∀i ∈ {1, . . . , N}) (3.7)

= Pr(gi(x) = bi ∀i|x) Pr(x)/ Pr(b1, . . . , bN).

Thus for equiprobable initial states and given keystream, x equivalently

maximises

Pr(gi(x) = bi ∀i) =
N∏

i=1

Pr(gi(x) = bi),

by (pairwise) independence of the gi(x) (1 ≤ i ≤ N).

In section 3.6 we shall use a reformulation of the maximum likelihood

condition, which makes use of the limit ln(1+x) = x+O(x2) as x → 0 in the

case when all Pr(gi(x) = 0) ≈ 1
2
: in this case, maximising (3.7) is equivalent

to maximising

ln

(
(
1

2
)−N

N∏
i=1

Pr(gi(x) = bi)

)

=
N∑

i=1

ln(Pr(gi(x) = bi)/
1

2
)

≈
N∑

i=1

(2 Pr(gi(x) = bi)− 1)
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=
N∑

i=1

[Pr(gi(x)⊕ bi = 0)− Pr(gi(x)⊕ bi = 1)]

=
N∑

i=1

E
(
(−1)gi(x)⊕bi

)
,

where E denotes the expected value of its argument.

3.2.3 Uniqueness of Maximum Likelihood Solutions

In this section we observe that the reduced equations (3.4) or (3.5) may not

yield a unique most likely solution x. This is apparent in the case of (3.5),

where x can only possibly be determined up to a coset x + U⊥.

To see that ambiguity is possible also for (3.4), observe that we can have

a subspace W of V containing U such that T maps every coset x + W⊥ to

some other coset of W⊥. (Such a W can arise when we have a decomposition

of the keystream generator states into those of two sub-generators: that is,

up to a reordering of positions in a vector of V , we have a cartesian product

V = W ×W⊥ (identifying W with the subspace {(w, 0) : w ∈ W}, and W⊥

with {(0, w) : w ∈ W⊥}) where W (and W⊥) is closed under T .) For such a

subspace W , given any x ∈ V , T (x + W⊥) = y + W⊥ for some y ∈ V . If this

condition holds, T (x) ∈ T (x + W⊥) = y + W⊥, so T (x) = y + w for some

w ∈ W⊥ and T (x+W⊥) = T (x)−w+W⊥ = T (x)+W⊥. On the other hand,

fU is the same distribution on all elements in a coset x + U⊥ ⊇ x + W⊥,

and hence is well-defined on cosets x + W⊥. Thus the properties of T and

fU together imply that equation (3.4) holds for x if and only if it holds for

any other element x′ of x + W⊥.
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3.2.4 How Large N Should Be

We now address the question: if N is large will the most likely coset of

solutions to equations (3.6) be the correct one, i.e. the coset of the initial

state of the generator, and, if so, how large does N need to be? We define

the least such N to be the unicity distance of the equations. We answer this

by way of a corollary to the following theorem.

3.2.4.1 A Theorem of Brynielsson [2]

Theorem 3.8. Let a and b be two distributions on K objects, taking val-

ues with probabilities aj and bj (j = 1, . . . , K) respectively; X be a uniform

random variable on {1, . . . ,M}; Yi (i = 1, . . . , M) be independent random

variables having the multinomial distribution M(N, a) for i = X, but the

multinomial distribution M(N, b) for i 6= X; and, lastly, yi be an observation

of Yi (i = 1, . . . ,M). Following definition 1.43, denote by d1(a, b) the order

1 directed divergence
∑K

j=1 aj log(aj/bj), and denote by pi (i = 1, . . . , M) the

probability

Pr(X = i|Y1 = y1, . . . , YM = yM).

Then the ordering on the i induced by the pi is the same as that induced

by the likelihood ratio

Pr(yi is an observation of M(N, a))

Pr(yi is an observation of M(N, b))
,

and the probability that X is amongst the k greatest values of i under this

ordering (for any k such that K ¿ log(M/k)/d1(a, b)) is approximately





0 if N < log(M/k)/d1(a, b)

1 if N > log(M/k)/d1(a, b)
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3.2.4.2 A Corollary

Corollary 3.9. Suppose that we have an array gi(x) (i = 1, . . . , N ; x ∈
V ) of Bernoulli random variables, taking value 0 with probabilities pi,x, for

which (for any i) gi(x) is the same distribution as gi(y) when x and y are

in the same coset, but otherwise are independent distributions; the gi(x) (for

fixed x) are independent; the parameters pi,x are themselves (for pairs of i

and pairs of x in different cosets) known independent realisations of some a

priori distribution X with mean 1
2
; and (bi)

N
i=1 is an observation of (gi(x))N

i=1

for (any) x in some particular coset — that of x0, say. Then, for large

number 2s of cosets, the maximum likelihood method determines the coset of

x0 after N ≈ s/I(gi(x); x) observations of gi(x0), where I(gi(x); x) denotes

the average order 1 mutual information (averaged over X) between gi(x) and

x.

Proof. If necessary, replace X by an approximation taking

K ¿ s/I(gi(x); x)

values, and make appropriate approximations in what follows.

Fix any x. For each i, there are 2K possibilities:

bi = b and Pr(gi(x) = 0) = p,

for b = 0, 1 and each probability p associated with X, and these possibilities

themselves have probabilities pairwise independent for distinct indices i. The

sequence yx = (Nx;b,p)b=0,1;p∈X , where

Nx;b,p := number of times bi = b and pi,x = p,

is an observation of the multinomial distribution on N observations of inde-

pendent events with these 2K probabilities.
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For x ∈ the coset of x0, these 2K probabilities are

Pr(bi = 0, pi,x = p) = p Pr(pi,x = p)

Pr(bi = 1, pi,x = p) = (1− p) Pr(pi,x = p),

defining a distribution a, while for other x

Pr(bi = b, pi,x = p)

= Pr(bi = b) Pr(pi,x = p) by independence,

=
1

2
Pr(pi,x = p) by balance,

defining a distribution b.

Writing, for convenience, Pr(p) for Pr(pi,x = p), the directed divergence

d1(a, b) is

(∑
p

p Pr(p) log
p Pr(p)
1
2
Pr(p)

)
+

(∑
p

(1− p) Pr(p) log
(1− p) Pr(p)

1
2
Pr(p)

)

=
∑

p

Pr(p)(p log(p/
1

2
) + (1− p) log((1− p)/

1

2
))

= I(gi(x); x).

Thus by theorem 3.8,

Pr(yx is an observation of M(N, a))

Pr(yx is an observation of M(N, b))

will be maximised for x in the correct coset (i.e. that of x0) for

N ≈ (log 2s)/I(gi(x); x) = s/I(gi(x); x).
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But

Pr(yx is an observation of M(N, a))

Pr(yx is an observation of M(N, b))

=

(
N

(Nx;b,p)b,p

) ∏
p(p Pr(p)))Nx;0,p

∏
p((1− p) Pr(p)))Nx;1,p

(
N

(Nx;b,p)b,p

) ∏
p(

1
2
Pr(p)))Nx;0,p

∏
p(

1
2
Pr(p)))Nx;1,p

= 2N
∏

p

pNx;0,p(1− p)Nx;1,p

= 2N Pr((bi)
N
i=1 comes from (gi(x))N

i=1),

whose maximisation is equivalent to the maximum likelihood method de-

scribed in section 3.2.2.

3.2.4.3 N for Reduced Output Function

In this case, we are considering the equations (3.4). We assume here, and

subsequently when considering unicity distance for reduced output function,

that the assumptions of the corollary apply for cosets of W⊥, where W is an

m-dimensional subspace of V containing U .

I(gi(x); x) = I(fU(T ix); x) = I(fU(x); x),

since T is bijective, so the unicity distance is

N ≈ m/I(fU(x); x). (3.10)

3.2.4.4 N for Reduced Key Space

Similarly with equations (3.5), if we make analogous assumptions about the

cosets of U⊥, we can apply the corollary to learn that the unicity distance is

N ≈ m′/I(f ◦ T i
U(x); x),

where m′ denotes the dimension of U .

We shall develop this result further in section 3.5.
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3.2.5 An Observation Concerning “Correlation Immu-

nity”

Following Siegenthaler [12], we define a function f(x1, . . . , xn) to be correla-

tion-immune to a set {i1, . . . , im} of input positions iff

I(f(x1, . . . , xn); xi1 , . . . , xim) = 0.

This mutual information is equal to

I(fU(x); x)

where U is the subspace of V generated by the standard basis vectors with

non-zero component in respective positions i1, . . . , im. Thus, by equation

(3.10), if f is correlation-immune, the maximum likelihood method will fail

no matter how much keystream is considered.

3.3 Correlation Attacks on Linearly Clocking

Stream Ciphers

Henceforth we focus our attention on the case where state transition is an

invertible linear transformation on V ; we will represent it as A, rather than T ,

and consider A to be an n×n matrix. (As a point of interest, we note that A

is similar to a matrix in rational canonical form, so that, by a suitable choice

of basis for V , the generator can be taken to comprise one or more separate

Galois-clocking LFSRs. Moreover, a change of basis preserves the dimension

of the smallest subspace of V on which f depends. The importance of this

subspace will become clear later in this chapter.)

This section will review some “traditional” theory of correlation attacks;
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in section 3.6 we will reformulate these ideas in the language of section 3.2,

which will cast new light on existing attacks and produce some new ones.

3.3.1 Linear Correlations to f

Linear correlation attacks exploit correlation between f and linear functions

on V i.e. functionals ∈ V ∗. For any function g : V → {0, 1} we define the

correlation cg,v of g to the functional “·v” by

cg,v := Pr(g(x) = x · v)− Pr(g(x) 6= x · v).

For convenience, we will write cv for a correlation cf,v of our keystream gen-

erator’s output function f .

As we saw in section 1.3.3, the set of all ±1-valued functionals {x 7→
(−1)x.v}v∈V is a complete orthogonal subset of the complex vector space of

complex-valued functions V → C with inner product

〈g1, g2〉 =
∑
v∈V

g1(v)g2(v).

In this context, we can re-express cg,v:

cg,v = Pr(g(x) = x · v)− Pr(g(x) 6= x · v)

= 2−n
∑
x∈V

(−1)g(x)⊕x·v

= 2−n〈(−1)g, (−1)·v〉

= 2−nD((−1)g)(v).

where, as in section 1.3.3, D is the DFT corresponding to the above orthog-

onal subset. We can apply theorem 1.16, part 1, to (−1)g to learn that

2−n ‖(−1)g‖2 = ‖D((−1)g)‖2 ,
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whence
∑
v∈V

c2
g,v = 1.

In particular, cg,v is non-zero for at least one v ∈ V .

3.3.2 Linear Correlation Attack

Fix any v ∈ V for which cv 6= 0. The sequences of bits (f(Aix))i generated

by the KG can be written (((Aix) · v)⊕ ei,x)i, where the ei,x are modelled as

independent Bernoulli random variables which take the value 0 with prob-

ability (1 + cv)/2 6= 1
2
. Thus the KG generates “noisy LFSR sequences”.

Considerable research effort has been directed towards the problem of the

efficient implementation of minimum distance decoding of such sequences

(when the error probability < 1
2
) to the underlying linear sequence. Siegen-

thaler [13] presents the straightforward method for solving this problem: to

examine each underlying linear sequence in turn and maximise (or minimise)

the number of agreements (“correlation”) between each of these linear se-

quences and the keystream. This method has2 time complexity N2m. Later,

in section 3.6, we shall characterise Siegenthaler’s attack in terms of the

language of section 3.2.

As previously observed by Mund et al. [10], a more efficient method,

borrowed from the theory of decoding first-order Reed-Muller codes (see, e.g.,

MacWilliams and Sloane [8]), makes use of the Walsh-Hadamard transform.

Before describing this method, we introduce some notation concerning the

Walsh-Hadamard transform and review the results from section 1.3.3.

2This situation can be described as “output function reduction”, and we can take m

to be the dimension of any subspace W of V containing v for which W⊥ is A-invariant.

See also sections 3.2.3 and 3.5.2.
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3.3.3 The Walsh-Hadamard Transform

For any subspace S ≤ V and real-valued function g on S, the Walsh-

Hadamard transform DS(g) of g on S is also a real-valued function on S,

defined by

DS(g)(v) =
∑
s∈S

(−1)s·vg(s) (v ∈ S).

For simplicity we write D for DV .

Denoting the dimension of S by d, we have the following results as con-

sequences of our definitions and of section 1.3.3:

1. The array DS(g)(v) (v ∈ S) for a function g : S → R can be computed

in time d2d and space 2d real storage locations.

2. DS(DS(g)) = 2dg for any g : S → R.

3. If g is a {0, 1}-valued function on V , D((−1)g)(v) = 2ncg,v (we defined

cg,x in section 3.3.1).

4.
∑

s∈S(DS(g)(s))2 = 2d
∑

s∈S(g(s))2 (g : S → R).

3.3.4 Reed-Muller Decoding Algorithm

We now return to the situation introduced in section 3.3.2, but assume also

that W⊥ is A-invariant. (In section 3.5.3 we shall prove that this implies W

is invariant under the transpose A∗ of A.3)

3We use the notation A∗ rather than AT to emphasise that this map is dual to A.
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First of all, observe that for any x, v ∈ W

(Aix) · v = (Aix)T v

= xT (A∗)iv where A∗ denotes the transpose of A

= x · ((A∗)iv)

= x · vi where vi = (A∗)iv ∈ W.

Now we can compute

|{i (1 ≤ i ≤ N) : x · vi = bi}| − |{i (1 ≤ i ≤ N) : x · vi 6= bi}|

=
N∑

i=1

(−1)(x·vi)⊕bi

=
∑
w∈W

(−1)x·wh(w) putting h(w) :=
∑

i:vi=w

(−1)bi

= DW (h)(x),

the Walsh-Hadamard transform of h on W .

3.3.5 Complexity of the Reed-Muller Attack

Using the results cited in section 3.3.3, we can summarise the complexity

of the Reed-Muller attack (the corresponding parameters for Siegenthaler’s

attack are shown in brackets):

• time complexity = m2m + N (N2m);

• space complexity = 2m (0).

3.3.6 Two Significant Observations

These two attacks, relying on correlation to the single functional “·v”, appear,

heuristically, to waste information as compared to the maximum likelihood
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attack. Generally, many cv will be non-zero, corresponding to simultaneous

correlation of the keystream to many linear sequences. Moreover we can

see from the results of section 3.3.3 that any function f : V 7→ {0, 1} is

characterised by D((−1)f ) and so also by its correlations (cv)v∈V to linear

functionals.

These observations will be explored subsequently in this chapter.

3.4 Characterising a Function by Correla-

tions to Linear Functionals

Given a real-valued function g on V , what function is characterised by the

correlations of g to the functionals in a subspace S∗ of V ∗ i.e. by the cor-

relations (cg,s)s∈S for a subspace S of V ? We now demonstrate that these

correlations in fact characterise gS.

Lemma 3.11. For any S ≤ V ,

D(E((−1)gS))(v) =





D((−1)g)(v) if v ∈ S

0 otherwise,

where E denotes expected value.

Proof.

D(E((−1)gS))(v) =
∑

v′∈V

(−1)v′·vE((−1)gS(v′))

=
∑

v′∈V

(−1)v′·v 1

|S⊥|
∑

s∈S⊥

(−1)g(v′+s)

=
1∣∣S⊥

∣∣
∑

v′′∈V,s∈S⊥

(−1)(v′′+s)·v(−1)g(v′′) (v′′ = v′ + s)

=
1∣∣S⊥

∣∣
∑

s∈S⊥

(−1)s·vD((−1)g)(v)
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Now S = (S⊥)⊥ (S ⊆ (S⊥)⊥ and they have the same dimension4), so that

if v /∈ S, ∃s′ ∈ S⊥ such that v · s′ = 1; then

∑

s∈S⊥

(−1)s·v =
∑

s∈S⊥

(−1)(s+s′)·v since s′ + S⊥ = S⊥

= −
∑

s∈S⊥

(−1)s·v,

so this sum is 0. If v ∈ S,
∑

s∈S⊥(−1)s·v =
∣∣S⊥

∣∣. Hence the result.

Corollary 3.12. gS is characterised by the (cg,s)s∈S.

3.5 The Unicity Distance N in Terms of Cor-

relations

In this section we demonstrate that the expressions for the unicity distances

obtained in section 3.2.4 can be couched in terms of the correlations cv of the

output function f .

3.5.1 Information in Terms of Correlations

Proposition 3.13. If S ≤ V is any subspace and g : V → R any balanced

function for which all Pr(gS(x) = 0) ≈ 1
2
, then we can approximate

I(x; gS(x)) ≈ 1

2 ln 2

∑
s∈S

c2
s.

4Let X be any subspace of V , and M a matrix whose columns are a basis of X.

im M ' V/ kerM , so dim M = dim V − dimkerM ; but im M = X and ker M = X⊥,

so dim X = dim V − dim X⊥. Applying this twice, dim(S⊥)⊥ = dim V − dim S⊥ =

dim V − (dimV − dim S) = dim S.
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Proof. From the Taylor expansion which we established in lemma 2.14:

i1(x) =
∞∑
i=1

x2i

2i(2i− 1)

we deduce the approximation

i1(x) ≈ 1

2
x2 for x ≈ 0.

Now we compute

I(x; gS(x)) = I(gS(x)|x)− I(gS(x)) by lemma 1.52

=
1

ln 2
2−n

∑
x∈V

i1(Pr(gS(x) = 0)− Pr(gS(x) = 1))

(I(gS(x)) = 0 because g is balanced)

≈ 1

2 ln 2
2−n

∑
x∈V

(Pr(gS(x) = 0)− Pr(gS(x) = 1))2

since all Pr(gS(x) = 0) ≈ 1
2

=
1

2 ln 2
2−n

∑
x∈V

E((−1)gS(x))2

=
1

2 ln 2
2−n2−n

∑
v∈V

(
D(E((−1)gS(x)))(v)

)2
by 3.3.3, point 4

(3.14)

=
1

2 ln 2
2−2n

∑
s∈S

(D((−1)g)(s))2 by section 3.4

=
1

2 ln 2

∑
s∈S

c2
g,s by 3.3.3, point 3.

(Notice that, with our assumption that g is balanced, cg,0 = 0.)
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3.5.2 Unicity Distance when Reducing the Output

Function

Now that state transition is linear, A is a well-defined map V/S → V/S on

the cosets of any subspace S of V if and only if that subspace is A-invariant:

the “if” direction is immediate, and for “only if”, observe that A(S) is both

a coset of S and a subspace of V , therefore must equal S. Moreover, we can

prove the following lemma:

Lemma 3.15. For any subspace U of V , there is a smallest subspace W of

V containing U for which W⊥ is A-invariant.

Proof. Let S = {subspaces S of V : S contains U and S⊥ is A-invariant}.
Certainly V ∈ S; and using corollary 3.19, which we prove later,

S1, S2 ∈ S ⇒ U ⊆ S1, U ⊆ S2, S⊥1 is A-invariant, S⊥2 is A-invariant

⇒ U ⊆ S1 ∩ S2, S1 is A∗-invariant, S2 is A∗-invariant

⇒ U ⊆ S1 ∩ S2, S1 ∩ S2 is A∗-invariant

⇒ U ⊆ S1 ∩ S2, (S1 ∩ S2)
⊥ is A-invariant

⇒ S1 ∩ S2 ∈ S

Thus W =
⋂

S∈S S is the (unique) required subspace.

As before, let m = dim W . Then by equation (3.10), the unicity distance

when reducing the output function f to fU is

N ≈ m/I(x; fU(x)).

Applying the result of proposition 3.13, we see that

N ≈ 2m ln 2∑
u∈U c2

u

,
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or

N ≈ m∑
u∈U c2

u

.

3.5.3 Unicity Distance when Reducing the Key Space

Similarly in this case, section 3.2.4 gives the unicity distance in terms of

I(x; (f ◦ Ai)U). To compute this information using proposition 3.13, we first

compute

D((−1)f◦Ai

)(v) =
∑

v′∈V

(−1)v·v′(−1)f(Aiv′)

=
∑

v′∈V

(−1)vT v′(−1)f(Aiv′)

=
∑

v′′∈V

(−1)vT A−iv′′(−1)f(v′′)

=
∑

v′′∈V

(−1)((A∗)−iv)T v′′(−1)f(v′′)

= D((−1)f )((A∗)−iv)

= 2nc((A∗)−iv) by section 3.3.3, point 3 (3.16)

Therefore, by proposition 3.13,

I(x; f ◦ Ai
U(x)) ≈ 1

2 ln 2

∑
v∈U

c2
((A∗)−iv). (3.17)

Now we wish to average this over values i, but in order to do this we need

some preliminary results.

Lemma 3.18. For any subspace S ≤ V , A−1S⊥ = (A∗S)⊥.

Proof. For any v, v′ ∈ V ,

(Av) · v′ = (Av)T v′ = vT (A∗v′) = v · (A∗v′);
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Therefore

v ∈ (A∗S)⊥ ⇔ v · (A∗s) = 0 for all s ∈ S

⇔ Av · s = 0 for all s ∈ S

⇔ Av ∈ S⊥

⇔ v ∈ A−1S⊥.

Corollary 3.19. A subspace S ≤ V is A∗-invariant ⇔ S⊥ is A-invariant.

Proof.

S = A∗S ⇔ S⊥ = (A∗S)⊥

⇔ S⊥ = (A−1)S⊥

⇔ AS⊥ = S⊥

Now we see that W is also the smallest A∗-invariant subspace of V con-

taining U , and that the subspaces (A∗)−iU (i = 1, . . . , N) will include the

non-zero elements of W with approximately equal probabilities 2m′−m (recall

that m′ = dim U). And since c0 = 0, the average value of the right hand

side of equation (3.17) is

1

2 ln 2
2m′−m

∑
w∈W

c2
w.

Hence

N ≈ 2m−m′ m′
∑

w∈W c2
w

. (3.20)

In particular, if W = V , or if each c2
v ≈ 2−n,

N ≈ m′2n−m′
. (3.21)
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3.6 Maximum Likelihood Attacks in Terms

of Correlations

3.6.1 Reformulation of a Maximum Likelihood Condi-

tion

In section 3.2, we saw that elements x of the most likely coset of initial

keystream generator states given observed keystream (bi)
N
i=1 maximise

N∑
i=1

E((−1)gi(x)⊕bi) (3.22)

in the case where all Pr(gi(x) = 0) ≈ 1
2
.

In the following sections, we shall reformulate this condition — in the

case of reduced output function or reduced key space — in terms of the

correlations cv of f , and explore cryptanalytic methods they suggest.

3.6.2 Reformulation for Reduced Output Function

Considering (3.22) in the case where gi(x) = fU(Aix), we first note that

D(E((−1)fU ))(v) =





2ncv if v ∈ U

0 otherwise

= D

(∑
u∈U

cu(−1)x·u
)

(v).

Therefore

E((−1)fU (x))) =
∑
u∈U

cu(−1)x·u,
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and we can rewrite (3.22) as follows:

N∑
i=1

E((−1)gi(x)⊕bi) =
N∑

i=1

(−1)biE((−1)fU (Aix))

=
N∑

i=1

∑
u∈U

cu(−1)(Aix)·u⊕bi . (3.23)

3.6.3 Cryptanalytic Applications

In this section we present two observations concerning the use of expres-

sion (3.23) in maximum likelihood attacks. Throughout the section we sup-

pose V = W ⊕W⊥, so that each coset of W⊥ has a (unique) representative

in W , and consequently we need only evaluate (3.23) for x ∈ W .

3.6.3.1 Siegenthaler’s Method

If we put U = 〈v〉, the vector space generated by v, maximising (3.23) over

x amounts to maximising

cv

N∑
i=1

(−1)(Aix)·v⊕bi ,

which is just Siegenthaler’s “closest fit” method. A corollary of section 3.5

is that this method succeeds with about m/c2
v bits of keystream.

3.6.3.2 Generalised “Reed-Muller Method”

A speedup akin to that of section 3.3.4 can be obtained for the task of

finding maximum likelihood solutions for any output function reduction, by

writing (3.23) as

N∑
i=1

∑
u∈U

cu(−1)(Aix)·u⊕bi =
N∑

i=1

∑
v∈U

cv(−1)x·(A∗iv)⊕bi

= DW (h)(x),
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where h(x) =
∑

v,i:A∗iv=x cv(−1)bi (x ∈ W ).

The vector of all values of h can be computed in time 2m′
N , so (3.23) can

be computed for all cosets of W⊥, i.e. for each x ∈ W , in time m2m + N2m′

and space 2m, rather than time N2m and negligible space: quite a remarkable

result!

3.6.4 Reformulation for Reduced Key Space

In this case, gi(x) = f ◦ Ai
U(x), and expression (3.22) is

N∑
i=1

E((−1)f◦Ai
U (x)⊕bi)

= 2−nD

(
D

(
N∑

i=1

E((−1)f◦Ai
U⊕bi)

))
(x) by section 3.3.3, point 2

= 2−nD

(
N∑

i=1

D(E((−1)f◦Ai
U⊕bi))

)
(x) by the linearity of D

=
∑
u∈U

(−1)x·u(
N∑

i=1

(−1)bic(A∗)−iu) using lemma 3.11 and (3.16). (3.24)

3.6.5 More Cryptanalytic Applications

In this section, we show that (3.24) can provide a practical vehicle for crypt-

analytic attack if the correlations cv of f vanish outside some subspace X of

dimension r which is not too large. (This will be the case if f depends only

on a small number r of state bits.)

We assume V = U ⊕U⊥, so that each coset of U⊥ has a unique represen-

tative in U , and we can perform a maximum likelihood attack by maximis-

ing (3.24) over x ∈ U . Thus the outer sum in (3.24) is a Walsh-Hadamard

transform on U , which we can compute in time m′2m′
and space 2m′

.
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Terms of the inner sum in (3.24) contribute only when c(A∗)−iu 6= 0, so we

need only compute c(A∗)−iu for those u ∈ U for which (A∗)−iu ∈ X i.e. for

u ∈ U ∩ A∗iX. To see how many such u there are for each i, we apply the

following lemma.

Lemma 3.25. For a random r-dimensional subspace S of V , dim(S ∩U) ≈
r + m′ − n.

Proof. The expected size of S ∩ U\{0} is (2n − 1)× the probability that a

random element of V \{0} is in both S\{0} and U\{0}, i.e.

(2n − 1)× (2r − 1)/(2n − 1)× (2m′ − 1)/(2n − 1) ≈ 2r+m′−n.

Thus if we model each A∗iX as a random r-dimensional subspace of V ,

dim (U ∩A∗iX) ≈ r + m′ − n, and its elements can be efficiently computed5

in time max{1, 2r+m′−n}.
Combining all this, we see that we can compute (3.24) for all cosets of x

with

• time complexity ≈ m′2m′
+ N max{1, 2r+m′−n};

• space complexity = 2m′
;

• number N of required keystream bits given by (3.20).

For r ≤ n/2, and W = V , the value for m′ = dim U which minimises the

time complexity is m′ = n/2, when

• time complexity ≈ n2n/2;

5In the case when U is a subspace whose elements are precisely those with 0 entries in

certain coordinate positions, straightforward Gaussian elimination can be used.
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• space complexity = 2n/2;

• number N of required keystream bits ≈ (n/2)2n/2, by equation (3.21),

even with the “worst case” assumption that c2
v ≈ 2−r for v ∈ X \ {0}.

3.6.6 Why Less Keystream May Be Required

Suppose r < n/2 and let s be maximal subject to rs ≤ n/2. Given N ′ bits

of keystream, we can construct
(

N ′
s

)
“reduced” equations for the initial key:

g(i1,...,is)U
(x) = bi1 ⊕ · · · ⊕ bis , (1 ≤ ij ≤ N ′, j = 1, . . . , s) (3.26)

where we have defined

g(i1,...,is)(x) :=
s⊕

j=1

f(Aijx).

The transform of (−1)g(i1,...,is) is the convolution of the transforms of the

(−1)f◦Aij
; consequently it vanishes outside a subspace of dimension rs. Now

essentially the method of the previous section applies, with required number

N ′ of required known keystream bits satisfying
(

N ′

s

)
≈ N,

i.e., for s ¿ N ,

N ′ ≈ (N.s!)1/s.

3.6.7 Example

To perform a known keystream attack on the sequence generator illustrated

in figure 3.1, we can choose U to be the set of states whose first 32 bits are 0.

Then U⊥ is the set of states whose last 32 bits are 0, W = V , n = m = 64,

m′ = 32, N = 32.264−32, r = 8, s = 4, and the attack will determine the last

32 bits of the initial state with
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64 stage LFSR (primitive feedback)

6

¡¡
8

½
½

½½

Z
Z

ZZ -f
(bi)

N
i=1

Figure 3.1: Example keystream generator

• time complexity ≈ 64.232 = 238;

• space complexity = 232;

• number N ′ of required keystream bits ≈ (32.232.4!)1/4 ≈ 210·4.

3.6.8 A Brief Observation Concerning Probabilistic f

The techniques of this section may be applicable even when some inputs

to f are not known linear functions of the initial state, but instead can be

modelled as independent random bits: their effect may then be absorbed by

a suitable choice of U .

3.7 An Hybrid Attack and Its Evaluation

This section is the first of two in this chapter which contain material ex-

tending the work in [5]. The results of this section are in fact those cited

in section 3.2 of the paper [5], and generalise and expand the idea on which

section 3.6.6 is based.

108



Suppose that we have observed N ′ bits of keystream. Fix arbitrary sub-

spaces U1 and U2 of V , and an arbitrary integer s ≥ 1. Following the example

of section 3.6.6, construct
(

N ′
s

)
equations in the initial key x:

g(i1,...,is)U1
(x) = bi1 ⊕ · · · ⊕ bis (1 ≤ ij ≤ N ′, j = 1, . . . , s) (3.27)

where now

g(i1,...,is)(x) :=
s⊕

j=1

fU2
(Aijx).

3.7.1 Unicity Distance of Equations (3.27)

These equations can only determine the correct value x up to a coset x+U⊥
1 ;

suppose that the requirements of corollary 3.9 are satisfied for U1. Write

m′ = dim U1.

First of all we compute the transform of E((−1)
g(i1,...,is)U1 ):

D
(
E((−1)

g(i1,...,is)U1 )
)

(v) =





D (E((−1)g(i1,...,is))) (v) if v ∈ U1

0 otherwise

by lemma 3.11, and

D (E((−1)g(i1,...,is))) (v)

= D
(
E((−1)

Ls
j=1 fU2

(Aij x))
)

(v)

= D

(
s∏

j=1

E((−1)fU2
(Aij x))

)
(v)

= 2−n(s−1)
∑

v1,...,vs∈VPs
j=1 vj=v

[
s∏

j=1

D
(
E((−1)fU2

(Aij x))
)

(vj)

]
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by theorem 1.16, part 3. Also

D
(
E((−1)fU2

(Aij x))
)

(v) =
∑
x∈V

(−1)v·xE((−1)fU2
(Aij x))

=
∑
x∈V

(−1)vT A−ij xE((−1)fU2
(x))

= D
(
(−1)fU2

)
((A∗)−ijv)

=





2nc(A∗)−ij v if (A∗)−ijv ∈ U2

0 otherwise.

Assembling all these components, we obtain the transform of g(i1,...,is)U1
:

D
(
E((−1)

g(i1,...,is)U1 )
)

(v) = 2n
∑

u1,...,us∈U2 :

v=
Ps

j=1(A
∗)ij uj∈ U1

s∏
j=1

cuj
for all v ∈ V .

By equation (3.14) in the proof of proposition 3.13,

I(x; g(i1,...,is)U1
(x)) ≈ 1

2 ln 2
2−2n

∑
v∈V

(
D

(
E((−1)

g(i1,...,is)U1
(x)

)
)

(v)
)2

=
1

2 ln 2

∑
v∈U1




∑
u1,...,us∈U2 :

v=
Ps

j=1(A
∗)ij uj

s∏
j=1

cuj




2

so

I(x; g(i1,...,is)U1
(x))

≈
∑

1≤i1,...,is≤N ′

1

2 ln 2

∑
v∈U1




∑
u1,...,us∈U2 :

v=
Ps

j=1(A
∗)ij uj

s∏
j=1

cuj




2

/

(
N ′

s

)
,

and by corollary 3.9, the least number N ′ of keystream bits required to de-

termine the correct coset of x using the maximum likelihood method satisfies
(

N ′

s

)
≈ m′

I(x; g(i1,...,is)U1
(x))
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from which we obtain

m′ ≈
∑

1≤i1,...,is≤N ′
v∈U1




∑
u1,...,us∈U2 :

v=
Ps

j=1(A
∗)ij uj

s∏
j=1

cuj




2

(3.28)

3.7.2 A Method for Solving Equations (3.27)

In this section we present a method for deriving the maximum likelihood

solution of equations (3.27).

As in section 3.6, the elements x of the most likely coset of initial key-

stream generator states given the observed keystream b1, . . . , bN ′ maximise

∑

1≤i1,...,is≤N ′
E((−1)

g(i1,...,is)U1
(x)⊕bi1

⊕bi2
⊕···⊕bis )

= 2−n
∑

1≤i1,...,is≤N ′
(−1)bi1

⊕bi2
⊕···⊕bis D

(
D

(
E((−1)

g(i1,...,is)U1 )
))

(x)

= 2−n
∑

1≤i1,...,is≤N ′
(−1)bi1

⊕bi2
⊕···⊕bis

∑
v∈V

(−1)x·vD
(
E((−1)

g(i1,...,is)U1 )
)

(v)

=
∑

1≤i1,...,is≤N ′
(−1)bi1

⊕bi2
⊕···⊕bis

∑
v∈U1

(−1)x·v ∑

u1,...,us∈U2 :

v=
Ps

j=1(A
∗)ij uj

s∏
j=1

cuj

=
∑
v∈U1

(−1)x·v




∑

1≤i1,...,is≤N ′
(−1)bi1

⊕bi2
⊕···⊕bis

∑

u1,...,us∈U2 :

v=
Ps

j=1(A
∗)ij uj

s∏
j=1

cuj




Thus the method of attack is to construct the array of values

∑

1≤i1,...,is≤N ′
(−1)bi1

⊕bi2
⊕···⊕bis

∑

u1,...,us∈U2 :

v=
Ps

j=1(A
∗)ij uj

s∏
j=1

cuj
(3.29)

for indices v ∈ U1 and compute the Walsh-Hadamard transform DU1 of this

array; then the index v corresponding to the greatest entry in the transformed
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array is an element of the most likely coset, provided N ′ is at least as large

as the value given by equation (3.28).

3.7.3 The Particular Case Outlined in Section 3.6.6

In section 3.6.6, we considered the case when the correlations cv of f vanish

outside a subspace X of dimension r < n/2, and took s to be the greatest

integer such that rs ≤ n/2, and U to be any subspace for which V = U⊕U⊥.

If we set U1 = U and U2 = X, then, since fU2
= f , equations (3.27)

become precisely the equations (3.26) of section 3.6.6.

As in sections 3.6.5 and 3.6.6, the method of attack consists of two stages:

firstly, constructing the array (3.29), and, secondly, computing its transform

in order to obtain the coset x0 + U⊥.

For the first task, choose a coordinate system for V so that U⊥ is spanned

by the first n−m′ standard basis vectors and U by the remaining m′ standard

basis vectors (recall that m′ = dim U). Now, given an s-tuple (i1, . . . , is),

form a matrix of rs vectors whose first r rows are a basis of (A∗)i1U2, whose

next r rows are a basis of (A∗)i2U2, and so on. Performing Gaussian elimina-

tion on this array allows one to compute all vectors v ∈ ∑s
j=1(A

∗)ijU2 whose

first n − m′ components are 0 — (at least) 2rs−(n−m′) vectors in all. Once

this has been done for one s-tuple (i1, . . . , is), the process is repeated for the

next such s-tuple; however, if the s-tuples are considered in increasing order

of
∑s−1

j=0(N
′)jsis−j, then generally only the last r rows of the matrix of rs

vectors need be changed and subjected to Gaussian elimination, and some

unnecessary repetition in the calculation is avoided.

Since the second stage consists of a Walsh-Hadamard transform of an m′

dimensional array, the method described here runs with

• time complexity = m′2m′
+

(
N ′
s

)
max{1, 2rs+m′−n}; and
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• space complexity = 2m′
,

just as in section 3.6.5.

Finally, we compute the required number N ′ of keystream bits from (3.28)

for the case c2
v ≈ 2−r for v ∈ X\{0}. We suppose that rs < n−dim U1 so that

for each v ∈ U1 and each s-tuple (i1, . . . is) (1 ≤ ij ≤ N ′) there is generally

at most one s-tuple (u1, . . . , us) (ui ∈ U2) such that v =
∑s

j=1(A
∗)ijuj.

Then (3.28) gives

m′ ≈
(

N ′

s

)
(2rs/2n−m′

)(2−r)s

=

(
N ′

s

)
2m′−n.

The time complexity is thus approximately

m′2m′
+ m′2n−m′

,

minimised at m′ = n/2 when it takes the value n2n/2. The corresponding

number of required keystream bits is

N ′ ≈ (s!m′2n−m′
)1/s

= (s!(n/2)2n/2)1/s

These conclusions agree with those of sections 3.6.5 and 3.6.6.

3.7.4 The Case U2 = 〈v〉
In this section we revisit the problem introduced in section 3.3.2, and seek to

solve it using the techniques of this section. We take U2 = 〈v〉 and, having

fixed any coordinate system for V , U1 to be the subspace of V consisting of

vectors with components equal to 0 outside the first m′ positions.
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The method now involves computing the array specified by (3.29), with

indices u ∈ U1 and corresponding values

∑

1≤i1,...,is≤N ′

u=
Ps

j=1(A
∗)ij uj

uj∈{0,v}

(−1)bi1
⊕bi2

⊕···⊕biscs
v.

(Recall that c0 = 0 given the assumption that f is balanced.) This can be

done using a technique that takes advantage of the Birthday Paradox. This

method is well established in the published literature, and an early reference

can be found in section 5, page 174, of [9]. First, construct a table whose

entries are the vectors (i1, . . . , ibs/2c) for 1 ≤ i1, . . . , ibs/2c ≤ N ′, indexed by

the last n − r components of
∑bs/2c

j=1 (A∗)ijv (or, in practice, by a suitable

hash of this value). Then for each (ibs/2c+1, . . . , is) (1 ≤ ibs/2c+1, . . . , is ≤ N ′)

compute the last n − r components of
∑s

j=bs/2c+1(A
∗)ijv and use it (or its

hash) as an index to the table; in addition use the last n− r components of
∑s

j=bs/2c+2(A
∗)ijv (or hash) as an index: if, in either case, the table has a

corresponding entry, we obtain a vector u =
∑

i∈I(A
∗)iv ∈ U1 for a subset

I of {1, . . . , N ′} of cardinality |I| ≤ s for each such corresponding entry,

and all vectors u =
∑s

j=1(A
∗)ijuj ∈ U (1 ≤ i1, . . . , is ≤ N ′, uj ∈ {0, v})

can be found in this way. This technique computes the array in time ≈
(

N ′
bs/2c

)
+

(
N ′
ds/2e

) ≈ (
N ′
ds/2e

)
and space

(
N ′
bs/2c

)
. The DFT of this array can then

be computed in time m′2m′
and space 2m′

.

In this case, the unicity distance equation (3.28) is

m′ ≈
∑

1≤i1,...,is≤N ′
u∈U1




∑

u=
Ps

j=1(A
∗)ij uj

uj∈{0,v}

s∏
j=1

cuj




2
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≈
∑

1≤i1,...,is≤N ′

u=
Ps

j=1(A
∗)ij uj

uj∈{0,v}

s∏
j=1

c2
uj

if s < n−m′ when each u ∈ U1 will generally have at most one expansion

u =
s∑

j=1

(A∗)ijuj (1 ≤ ij ≤ N ′; uj ∈ {0, v}).

If we assume that approximately 1 in 2n−m′
of the

(
N ′
s

)
sums

∑s
j=1(A

∗)ijv

has 0s in the last n−m′ coordinate positions, this becomes

m′ ≈
s∑

t=1

(
N ′

t

)
2m′−nc2t

v

≈ 2m′−n

s∑
t=1

(N ′c2
v)

t

t!

≈ 2m′−n (N ′c2
v)

s

s!
for practical values of m′ and s

from which

N ′ ≈
(
s!m′2n−m′

)1/s

c−2
v . (3.30)

In order to gain some appreciation of the usefulness of this method, we

make the simplifying assumption that s is even, and compute the time com-

plexity:
(

N ′

ds/2e
)

+ m′2m′ ≈ (N ′)s/2
/(s/2)! + m′2m′

≈
((

s!m′2n−m′
)1/s

c−2
v

)s/2

/(s/2)! + m′2m′

≈
√

s!m′2(n−m′)/2−s log cv/(s/2)! + m′2m′
.

In any case where log
(√

s!m′/(s/2)!
)

and log m′ differ by a quantity ¿ m′,

we can choose

m′ ≈ (n−m′)/2− s log cv
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i.e.

m′ ≈ n− s log cv

3

to achieve a running time of about 2m′2m′
. From equation (3.30), we can

see that increasing s can dramatically reduce the required number N ′ of

keystream bits.

3.8 Simultaneous Correlation and “Fast Cor-

relation Attacks”

Our original problem (3.1) was to solve the simultaneous equations

bi = f(T ix) (i = 1, . . . , N).

We consider the situation where T is a linear transformation A on V , and,

as in section 3.6.5, the correlations cv of f vanish outside a subspace X

of dimension r, so that f depends only on a small number r of state bits.

Choose a basis of V so that f is a function of the first r coordinates of Aix.

We denote the jth coordinate of a vector v ∈ V as (v)j.

Using Gallager’s algorithm (see section 1.5.4) as a model, we attempt an

iterative reconstruction of the sequence of vectors (xi)
N
i=1 (xi ∈ X), where the

first r components of xi are of the first r components of Aix for the correct

value x (and the other components = 0). To do this we store N distributions

on r-bit vectors — one corresponding to each xi — and make use of linear

relations amongst the rN bits (Aix)j (1 ≤ i ≤ N , 1≤ j ≤ r).

Given an s-tuple (i1, . . . , is) of integers ij (1 ≤ ij ≤ N) and an s-tuple of
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vectors (v1, . . . , vs) (vj ∈ X),

s⊕
j=1

vj · xij =
s⊕

j=1

vj · (Aijx)

=
s⊕

j=1

vT
j Aijx

=
s⊕

j=1

((A∗)vj)
T x

=

(
s∑

j=1

(A∗)ijvj

)
· x

≡ 0 for all x ∈ V ⇔
s∑

j=1

(A∗)ijvj = 0.

Let Jk denote a relation
⊕s

j=1 vk,j · xik,j
= 0 arising from an s-tuple of

distinct integers (ik,1, . . . , ik,s) (1 ≤ ik,j ≤ N) and corresponding s-tuple

(vk,1, . . . , vk,s) of vectors ∈ X which satisfy the condition
∑s

j=1(A
∗)ik,jvk,j =

0. For convenience, we write i ∈ Jk iff i ∈ {ik,1, . . . , ik,s}. Suppose we have

found m such relations, for k = 1, . . . , m.

Denote by pi,y the probability Pr(xi = y|f(Aix) = bi) for 1 ≤ i ≤ N

and y ∈ X, and by (ci,y)y∈X the correlations corresponding to the Walsh-

Hadamard transform of the array (pi,y)y∈X for each fixed i (1 ≤ i ≤ N):

ci,y = 2−r
∑
v∈X

(−1)v·ypi,v (y ∈ X)

so that

ci,y = Pr
v∈V

(v · y = 0|f(Aix) = bi)− Pr
v∈V

(v · y = 1|f(Aix) = bi)
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for any y ∈ X. Then, as in section 1.5.4, we can compute, for any y ∈ X,

Pr(xd = y|(bi)
N
i=1 and relations Jk (1 ≤ k ≤ m) hold)

=
Pr(relations Jk (1 ≤ k ≤ m) hold|xd = y, (bi)

N
i=1) Pr(xd = y|(bi)

N
i=1)

Pr(relations Jk (1 ≤ k ≤ m) hold|(bi)N
i=1)

(3.31)

and

Pr(relations Jk (1 ≤ k ≤ m) hold|xd = y, (bi)
N
i=1)

=
m∏

k=1

Pr(relation Jk holds|xd = y, (bi)
N
i=1) if the Jk\{d} are disjoint

=
m∏

k=1
d∈Jk




1

2


1 + (−1)y·vk,jk,d

s∏
j=1

ik,j 6=d

cik,j ,vk,j







m∏

k=1
d/∈Jk

(
1

2

(
1 +

s∏
j=1

cik,j ,vk,j

))
,

where for each k (1 ≤ k ≤ m) and d ∈ Jk we define jk,d so that ik,jk,d
= d. The

argument justifying the last line is analogous to that following equation (1.60)

in chapter 1. Assuming the validity of that expression,

Pr(xd = y|(bi)
N
i=1 and relations Jk (1 ≤ k ≤ m) hold)

=

pd,y

∏m
k=1
d∈Jk

(
1 + (−1)y·vk,jk,d

∏s
j=1

ik,j 6=d
cik,j ,vk,j

)

∑
y∈X

[
pd,y

∏m
k=1
d∈Jk

(
1 + (−1)y·vk,jk,d

∏s
j=1

ik,j 6=d
cik,j ,vk,j

)]

These equations suggest the following version of Gallager’s algorithm:

1. For 1 ≤ i ≤ N and y ∈ X, set

pi,y :=





1/kbi
if f(y) = bi

0 otherwise

where kb := |{y ∈ X : f(y) = b}| for b = 0, 1.
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2. Given the sequence of probabilities distributions ((pi,y)y∈X)N
i=1, com-

pute the corresponding sequence of correlations ((ci,y)y∈X)N
i=1 given by

ci,y = 2−r
∑

v∈X(−1)v·ypi,v (1 ≤ i ≤ N , y ∈ X).

3. Generate a new sequence of probability distributions (p′i,y)
N
i=1 according

to the equations

p′i,y = αpi,y

m∏

k=1
i∈Jk


1 + (−1)y·vk,jk,i

s∏
j=1

ik,j 6=i

cik,j ,vk,j


 ,

where α is chosen so that
∑

y∈X p′i,y = 1 i.e.

α =





∑
y∈X


pi,y

m∏

k=1
i∈Jk


1 + (−1)y·vk,jk,i

s∏
j=1

ik,j 6=i

cik,j ,vk,j











−1

.

4. Set pi,y := p′i,y (1 ≤ i ≤ N, y ∈ X).

5. If the sequence ((pi,y)y∈Y )N
i=1 has not converged, goto 2.

6. Recover a codeword x′1, . . . , x
′
N by choosing each x′i ∈ X so that pi,x′i =

maxy∈X pi,y.

As in section 1.5.4, it is clear that we can readily modify this algorithm in

order to accommodate Gallager’s suggestion that the contribution to (p′i,y)y∈X

due to a relation Jk should be computed using probability estimates (pi,y)y∈X

which did not make use of the relation Jk when they themselves were last

re-estimated.
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3.8.1 Finding Suitable Relations

Note first of all that it is sufficient to find relations J for which 1 ∈ J , since

for indices 1 ≤ i1 < · · · < is ≤ N and vectors v1, . . . , vs ∈ X

s∑
j=1

vj · (Aijx) = 0 for all x ∈ V

⇔
s∑

j=1

vj · (Aij−i1+1x) = 0 for all x ∈ V

by the invertibility of A on V .

The number m(s) of relations 1 = i1 < · · · < is ≤ N and vectors

v1, . . . , vs ∈ X \ {0} involving s sequence positions is

m(s) ≈
(

N − 1

s− 1

)
(2r − 1)s2−n ≈ N s−1

(s− 1)!
2rs−n

These relations can be found using a Gaussian elimination technique like

that in section 3.7.3. For each sequence of indices 1 = i1 < · · · < is ≤ N ,

form a matrix of rs vectors whose first r rows are a basis of (A∗)i1X, whose

next r rows are a basis of (A∗)i2X, and so on. Perform Gaussian elimination

to compute all linear combinations ∈ ∑s
j=1(A

∗)isX which equal 0. As before,

once this has been done for one s-tuple (i1, . . . , is), the process is repeated

for the next such s-tuple; however, if the s-tuples are considered in increasing

order of
∑s−1

j=0 N jsis−j, then generally only the last r rows of the matrix of rs

vectors need be changed and subjected to Gaussian elimination, and some

unnecessary repetition in the calculation is avoided. The time complexity of

this process is approximately r
(

N−1
s−1

)
.

Alternatively, the relations can be found using a technique taking advan-

tage of the Birthday Paradox. The idea, in this context, is first to construct

a table indexed by vectors v ∈ V (or, in practice, by a suitable hash of such

vectors) whose entries are a list of all sequences (i2, . . . , ibs/2c, v1, . . . , vbs/2c)
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(1 < i2 < · · · < ibs/2c ≤ N ; v1, . . . , vbs/2c ∈ X) for which v =
∑bs/2c

j=1 (A∗)ij vj.

Note that any list with more than one entry yields a relation
∑bs/2c

j=1 (A∗)ij vj +
∑bs/2c

j=1 (A∗)i′
j v′j = 0 for any two distinct entries (i2, . . . , ibs/2c, v1, . . . , vbs/2c)

and (i′2, . . . , i
′
bs/2c, v

′
1, . . . , v

′
bs/2c). Once the table is constructed, we com-

pute, for each (ibs/2c+1, . . . , is, vbs/2c+1, . . . , vs) (1 < ibs/2c+1 < · · · < is ≤
N ; vbs/2c+1, . . . , vs ∈ X) the vector v =

∑s
j=bs/2c+1(A

∗)ij vj and use the

value v as an index into the table. If there is any entry in the table corre-

sponding to v, then for each such entry (i2, . . . , ibs/2c, v1, . . . , vbs/2c) for which

|{i2, . . . , is}| = s − 1 we have a relation
∑s

j=1(A
∗)ij vj = 0. Moreover, it is

clear that every such relation can be found using this technique. The table

can be constructed in time and space ≈ (
N−1

bs/2c−1

)
2rbs/2c and construction of

relations from it in additional time ≈ (
N−1
ds/2e

)
2rds/2e.

3.8.2 Concerning the Effectiveness of this Algorithm

An evaluation of attacks based on the algorithm described in the previous

section requires a criterion for its convergence, analogous to that provided

by Canteaut and Trabbia [3] for the convergence of the original Gallager

algorithm (see section 1.5.4). The determination of such a criterion remains

a topic for further study.
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Chapter 4

Some Concluding Observations

In this final chapter, we make some general observations — and present

some general results — concerning the Discrete Fourier Transform and its

applications which arose naturally during the specific considerations of the

previous two chapters.

4.1 The DFT and Probability Distributions

The DFT, defined in section 1.3.4, takes arguments which are complex-valued

functions on a finite group G. Of particular interest to us is the case where

these complex-valued functions in fact correspond to probability distributions

on G:

g 7→ Pr(g)

If A1 and A2 are independent probability distributions on G, and gi ∈ G

is distributed according to Ai (i = 1, 2), the distribution A1A2 on g1g2, the

result of combining g1 and g2 using the binary operation of multiplication in
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G, is given by

PrA1A2(g) =
∑

g1,g2:g1g2=g

PrA1(g1) PrA2(g2). (4.1)

Thus g 7→ PrA1A2(g) is the convolution of g 7→ PrA1(g) and g 7→ PrA2(g):

that is, their product in the algebra CG.

Suppose now that D : CG → ⊗h
i=1Cdi is a DFT for G. Then

D (g 7→ PrA1A2(g)) = D (g 7→ PrA1(g)) D (g 7→ PrA2(g)) . (4.2)

From this it follows by induction that if A1, . . . , As are pairwise independent

probability distributions on a finite group G, and D is a DFT for G, then the

distribution A1 . . . As on a product g1 . . . gs, where gi is distributed according

to Ai (1 ≤ i ≤ s), can be computed as

(g 7→ PrA1...As(g)) = D−1

(
s∏

i=1

D(g 7→ PrA1(g))

)
.

This can imply a considerable improvement in computational efficiency over

straightforward calculation not using D. For example, for s = 2 and G

supersolvable, the two vectors D (g 7→ PrA1(g)) can be computed in time

≈ |G| ln |G|, their product in time ≈ |G|, and D−1 in time ≈ |G| ln |G|+ |G|,
giving an overall complexity of order |G| ln |G|. This compares favourably

with the calculation of (4.1) performed by looping over all values of g1, g2 ∈ G,

and hence of complexity |G|2.
Consider finally the case of a distribution A on G = C2, the cyclic group

of order 2, which we identify with the set {0, 1} under addition mod 2. If

we write the distribution as a function f : i 7→ pi (i = 0, 1), then the Walsh-

Hadamard transform D (a DFT for G) maps this to the function




0 7→ p0 + p1

1 7→ p0 − p1
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Note that p0 + p1 = 1, so that the distribution A is characterised entirely by

p0 − p1 = E((−1)g).

This explains the importance of expressions of the form E((−1)g) in the work

presented in chapter 3.

4.1.1 The “Pile-up” Lemma Revisited

It follows from the preceding paragraph that the “Pile-up Lemma”, lemma

1.19, is an immediate consequence of the Walsh-Hadamard transform D on

C2. For suppose that X and Y are independent distributions on {0, 1}. For

any distribution Z on {0, 1} denote by fZ the function {0, 1} → C mapping

i 7→ PrZ(i). By equation (4.2)

D(g 7→ PrX⊕Y (g)) = D(g 7→ PrX(g))D(g 7→ PrY (g))

with D as defined in the previous paragraph. In particular,

D(g 7→ PrX⊕Y (g))(1) = [D(g 7→ PrX(g))(1)] [D(g 7→ PrY (g))(1)] ,

or, in the notation of 1.18,

c(X ⊕ Y ) = c(X)c(Y ).

It readily follows from this, by induction, that for m independent distribu-

tions X1, . . . Xm on {0, 1}

c(X1 ⊕ · · · ⊕Xm) = c(X1) . . . c(Xm),

as required.
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4.2 Induced Distributions and the DFT

An important consideration in chapter 3 was the result presented in section

3.4 concerning the transform of a “reduced distribution”. Here we present

this result in a more general context.

Suppose G is a finite group with DFT D, and H 6 G is a subgroup.

Given a distribution A on G, there is a natural induced distribution Ā on G

defined by averaging the probabilities of elements in the same coset of G. For

convenience we will consider left cosets for the remainder of this section, but

similar considerations apply to right cosets: it turns out that the result is

simplest when G is abelian, and then we do not need to distinguish between

the two.

Explicitly, Ā is defined, for each g ∈ G, by

PrĀ(g) =
1

|H|
∑

h∈H

PrA(gh).

We can now compute

D

(∑
g∈G

PrĀ(g)g

)

= D

(∑
g∈G

1

|H|
∑

h∈H

PrA(gh)g

)

=
1

|H|D
(∑

g∈G

∑

h∈H

PrA(g)gh−1

)

=

[
D

(∑
g∈G

PrA(g)g

)](
1

|H|
∑

h∈H

D(h)

)
.

Moreover for x ∈ G and any h1 ∈ H,

(∑

h∈H

D(h)

)
(x)
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=

(∑

h∈H

D(hh1)

)
(x)

=

[(∑

h∈H

D(h)

)
(x)

]
[D(h1)(x)] ;

thus [(∑

h∈H

D(h)

)
(x)

]
[D(h1)(x)− I] = 0.

In the case where G is abelian, so that D : CG → C|G|, this implies that

either
(∑

h∈H D(h)
)
(x) = 0 or D(h1)(x) = 1 for all h1 ∈ H. Hence

D

(∑
g∈G

PrĀ(g)g

)
(x)

=





D
(∑

g∈G PrA(g)g
)

(x) if D(h)(x) = 1 for all h ∈ H

0 otherwise.

4.3 The DFT and Order 2 Information

In this section we revisit the ideas behind the proof of the conjecture for

order 2 information presented in section 2.4.

Suppose that X is the uniform distribution on an abelian group G and

that f is a probabilistic function G → [0, 1] i.e. a map f : G → {distributions

on {0, 1}}. Our objective is to express I2(X; f(X)) in terms of a DFT D

on G (c.f. definition 1.8). To help do this, first define three maps f0, f1 and

f̃ : G → C by the rules

f0(g) := Pr(f(g) = 0)

f1(g) := Pr(f(g) = 1)

f̃(g) := Pr(f(g) = 0)− Pr(f(g) = 1)
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for any g ∈ G. Denote the average values of these maps over all g ∈ G by

φ0, φ1 and φ respectively, so that

φ0 + φ1 = 1

φ0 = (1 + φ)/2

φ1 = (1− φ)/2

First we observe that

D(f̃)(0) =
∑

h∈G

f̃(h)fh(0) by definition 1.8

=
∑

h∈G

f̃(h) since each fh(0) = fh(0)fh(0) and |fh(0)| = 1

= |G|φ.

Now we can compute

I2(X; f(X))

=




∑
g∈G
i=0,1

Pr(X = g) Pr(f(X) = i)

(
Pr(X = g, f(X) = i)

Pr(X = g) Pr(f(X) = i)

)2


− 1

=
1

|G|




∑
g∈G
i=0,1

Pr(f(g) = i)2

Pr(f(X) = i)


− 1

=
1

|G|




∑
g∈G




(
(1 + f̃(g))/2

)2

φ0

+

(
(1− f̃(g))/2

)2

φ1





− 1

=
1

|G|

[∑
g∈G

(
1 + 2f̃(g) + f̃(g)2

4φ0

+
1− 2f̃(g) + f̃(g)2

4φ1

)]
− 1

=
1

|G|
∑
g∈G

(
1 + f̃(g)2 + 2 (φ1 − φ0) f̃(g)− 4φ0φ1

4φ0φ1

)
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=
1 +

(
1
|G|

∑
g∈G f̃(g)2

)
− 2φ2 − (1− φ2)

1− φ2 since 4φ0φ1 = (1− φ2)

=
−φ2 + 1

|G|
∑

g∈G f̃(g)2

1− φ2

=
−φ2 + 1

|G|2
∑

g∈G D(f̃)(g)2

1− 1
|G|2 D(f̃)(0)2

=

∑
g∈G\{0} c2

g

1− c2
0

where we have written cg := 1
|G|D(f̃)(g) for each g ∈ G.
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